Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New materials to help stop lithium-ion battery fires, explosions and improve battery performance

Purdue University scientists have come up with patented techniques that may cut down the fire risk from lithium-ion batteries, which are found in everyday electronic devices. (Stock photo)
Purdue University scientists have come up with patented techniques that may cut down the fire risk from lithium-ion batteries, which are found in everyday electronic devices. (Stock photo)

Abstract:
From automobiles and planes to laptops and e-bikes, lithium-ion batteries have been blamed for causing fires in high-tech devices. Now, Purdue University scientists have come up with patented techniques that may cut down the risk from these popular batteries, which are found in everyday devices such as phones and tablets.

New materials to help stop lithium-ion battery fires, explosions and improve battery performance

West Lafayette, IN | Posted on October 2nd, 2019

“The major problem that hinders the wider implementation of these batteries into more automobiles and other larger devices is the flammable and explosive nature of the liquid electrolyte materials used in their fabrication,” said Ernesto E. Marinero, a professor of materials engineering and electrical and computer engineering in Purdue’s College of Engineering. “These liquids are used in what constitutes the highway, the electrolyte, for shuttling reversibly lithium ions between the battery electrodes during charge and discharge cycles.”

Marinero said the Purdue research team created solutions that address the flammability problem, along with the need for high plasticity in the material inside the battery that connects the anode and cathode electrodes.

Purdue scientists created a novel composite solid-state electrolyte material system comprising ceramic nanoparticles embedded in polymer matrixes.

“These patented technologies are designed to provide a safer path within the battery and increase the ionic conductivity and performance,” Marinero said. “In addition, these composite materials potentially enable the use of pure lithium metal anodes, to increment the volumetric capacity density of existing batteries by a factor of about five.”

Marinero said the Purdue innovations have applications beyond automobiles and personal electronic devices. The battery technology also can help improve the function and lifetime of medical devices such as pacemakers.

Andres Villa, a doctoral research assistant who works in Marinero’s laboratory, studied the effects of various materials on the ionic conductivity. He found that less than 10% per weight of ceramic nanoparticles in a polymer composite electrolyte are needed to surpass the ionic conductivity of thin films comprising only the ceramic material, thereby significantly cutting down production costs.

Marinero and his team worked with scientists at the Argonne National Laboratory and the Battery Innovation Center on their technologies.

The technologies developed by Marinero and his team have been patented through the Purdue Research Foundation Office of Technology Commercialization. The researchers are looking for partners to further test and commercialize their technology. For more information on licensing this Purdue innovation, contact D.H.R. Sarma at the Office of Technology Commercialization at

The work aligns with Purdue's Giant Leaps celebration of the university’s global advancements in sustainability and health as part of Purdue’s 150th anniversary. Those are two of the four themes of the yearlong celebration’s Ideas Festival, designed to showcase Purdue as an intellectual center solving real-world issues.

####

About Purdue University
About Purdue Research Foundation Office of Technology Commercialization

The Purdue Research Foundation Office of Technology Commercialization operates one of the most comprehensive technology transfer programs among leading research universities in the U.S. Services provided by this office support the economic development initiatives of Purdue University and benefit the university's academic activities through commercializing, licensing and protecting Purdue intellectual property. The office is managed by the Purdue Research Foundation, which received the 2016 Innovation and Economic Prosperity Universities Award for Innovation from the Association of Public and Land-grant Universities. The Purdue Research Foundation is a private, nonprofit foundation created to advance the mission of Purdue University. Visit the Office of Technology Commercialization for more information.

For more information, please click here

Contacts:
Writer: Chris Adam, 765-588-3341,

Source: Ernesto Marinero,

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project