Home > Press > Machine learning at the quantum lab
Artistic illustration of the potential landscape defined by voltages applied to nanostructures in order to trap single electrons in a quantum dot. CREDIT Department of Physics, University of Basel |
Abstract:
For several years, the electron spin of individual electrons in a quantum dot has been identified as an ideal candidate for the smallest information unit in a quantum computer, otherwise known as a qubit.
Controlled via applied voltages
In quantum dots made of layered semiconductor materials, individual electrons are caught in a trap, so to speak. Their spins can be determined reliably and switched quickly, with researchers keeping the electrons under control by applying voltages to the various nanostructures within the trap. Among other things, this allows them to control how many electrons enter the quantum dot from a reservoir via tunneling effects. Here, even small changes in voltage have a considerable influence on the electrons.
For each quantum dot, the applied voltages must therefore be tuned carefully in order to achieve the optimum conditions. When several quantum dots are combined to scale the device up to a large number of qubits, this tuning process becomes enormously time-consuming because the semiconductor quantum dots are not completely identical and must each be characterized individually.
Automation thanks to machine learning
Now, scientists from the Universities of Oxford, Basel, and Lancaster have developed an algorithm that can help to automate this process. Their machine-learning approach reduces the measuring time and the number of measurements by a factor of approximately four in comparison with conventional data acquisition.
First, the scientists train the machine with data on the current flowing through the quantum dot at different voltages. Like facial recognition technology, the software gradually learns where further measurements are needed with a view to achieving the maximum information gain. The system then performs these measurements and repeats the process until effective characterization is achieved according to predefined criteria and the quantum dot can be used as a qubit.
"For the first time, we've applied machine learning to perform efficient measurements in gallium arsenide quantum dots, thereby allowing for the characterization of large arrays of quantum devices," says Dr. Natalia Ares from the University of Oxford. "The next step at our laboratory is now to apply the software to semiconductor quantum dots made of other materials that are better suited to the development of a quantum computer," adds Professor Dr. Dominik Zumbühl from the Department of Physics and the Swiss Nanoscience Institute at the University of Basel. "With this work, we've made a key contribution that will pave the way for large-scale qubit architectures."
####
For more information, please click here
Contacts:
Dr. Natalia Ares
Materials Department, Oxford University
16 Parks Road
Oxford, OX1 3PH, UK
Tel: +44 (0)1865 273719
https://www.natalia-ares.com/
Prof. Dr. Dominik M. Zumbühl
Department of Physics, University of Basel
Klingelbergstrasse 82
4056 Basel, Switzerland
T +41 (0)61 207 36 93
http://ZumbuhlLab.unibas.ch
Dr. Edward Laird
Department of Physics, Lancaster University
Office: A051, A - Floor, Physics Building
Lancaster LA1 4YB, UK
Tel: +44 (0)1524 510831
http://wp.lancs.ac.uk/laird-group/
Copyright © Swiss Nanoscience Institute at the University of Basel
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Quantum Computing
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Quantum Dots/Rods
A new kind of magnetism November 17th, 2023
IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023
Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023
NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||