Home > Press > One-atom switch supercharges fluorescent dyes: Rice University lab discovers simple technique to make biocompatible 'turn-on' dyes
Rice University chemist Han Xiao and his colleagues have discovered a simple method to turn fluorescent tags on and off with visible light by switching one atom. CREDIT Jeff Fitlow/Rice University |
Abstract:
It only took the replacement of one atom for Rice University scientists to give new powers to biocompatible fluorescent molecules.
This super-resolution video of histone proteins using the thio-caged dye developed by Rice University scientists shows a 43-fold increase in fluorescence when triggered by visible light. It demonstrates the fluorophores' ability to reveal the fine structures of target proteins when combined with protein-labeling technologies. (Credit: Xiao Lab/Rice University and Wensel Lab/Baylor College of Medicine)
The Rice lab of chemist Han Xiao reported in the Journal of the American Chemical Society it has developed a single-atom switch to turn fluorescent dyes used in biological imaging on and off at will.
The technique will enable high-resolution imaging and dynamic tracking of biological processes in living cells, tissues and animals.
The Rice lab developed a minimally modified probe that can be triggered by a broad range of visible light. The patented process could replace existing photoactivatable fluorophores that may only be activated with ultraviolet light or require toxic chemicals to turn on the fluorescence, characteristics that limit their usefulness.
The researchers took advantage of a phenomenon known as photo-induced electron transfer (PET), which was already known to quench fluorescent signals.
They put fluorophores in cages of thiocarbonyl, the moeity responsible for quenching. With one-step organic synthesis, they replaced an oxygen atom in the cage with one of sulfur. That enabled them to induce the PET effect to quench fluorescence.
Triggering the complex again with visible light near the fluorescent molecule's preferred absorbance oxidized the cage in turn. That knocked out the sulfur and replaced it with an oxygen atom, restoring fluorescence.
"All it takes to make these is a little chemistry and one step," said Xiao, who joined Rice in 2017 with funding from the Cancer Prevention and Research Institute of Texas (CPRIT). "We demonstrated in the paper that it works the same for a range of fluorescent dyes. Basically, one reaction solves a lot of problems."
Researchers worldwide use fluorescent molecules to tag and track cells or elements within cells. Activating the tags with low-powered visible light rather than ultraviolet is much less damaging to the cells being studied, Xiao said, and makes the long exposures of living cells required by super-resolution imaging possible. Super-resolution experiments by Theodore Wensel, the Robert A. Welch Chair in Chemistry at Baylor College of Medicine, and his team confirmed their abilities, he said.
"We feel this will be a really good probe for living-cell imaging," Xiao said. "People also use photoactivatable dye to track the dynamics of proteins, to see where and how far and how fast they travel. Our work was to provide a simple, general way to generate this dye."
The researchers found their technique worked on a wide range of common fluorescent tags and could even be mixed for multicolor imaging of targeted molecules in a single cell.
###
Rice postdoctoral researcher Juan Tang is lead author of the paper. Co-authors are Rice graduate students Kuan-Lin Wu and Jingqi Pei; postdoctoral fellow Michael Robichaux of Baylor; and graduate student Nhung Nguyen and Yubin Zhou, an assistant professor at the Center for Translational Cancer Research at Texas A&M University. Xiao is the Norman Hackerman-Welch Young Investigator and an assistant professor of chemistry, biosciences, and bioengineering.
CPRIT, the Robert A. Welch Foundation, a Hamill Innovation Award, a John S. Dunn Foundation Collaborative Research Award and the National Institutes of Health supported the research.
####
About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 4 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance.
For more information, please click here
Contacts:
Mike Williams
713-348-6728
Copyright © Rice University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
Imaging
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||