Home > Press > Scientists invented how to improve steel properties by 100 times: A breakthrough method of ion implantation makes stainless steel more wear resistant by 100 times
![]() |
Scientists from Tomsk Polytechnic University developed a new method of ion implantation that dramatically expands the application of the alloying process in the industry. This is a highly intensive implantation of ions with low energy that can revolutionize the technology of improving material properties. TPU scientists have already experimentally confirmed the possibility of creating a doped surface layer with a depth of several hundred micrometers, while other methods of ion doping enable a depth of several tens and hundreds of nanometers. CREDIT Tomsk Polytechnic University |
Abstract:
Scientists from Tomsk Polytechnic University have updated the alloying process, i.e. improving the properties of metal with impurities, which not only enhances the wear resistance of materials but also provides new qualities required by hi-tech manufacturing, science, and energy.
The study results were published in the journal Surface and Coatings Technology and presented at the conference on Surface Modification of Materials by Ion Beams (SMMIB) 2019 that recently took place in Tomsk.
By now, traditional alloying methods are reported to have exhausted their technological potential. Therefore, metals are more increasingly exposed to beams of charged particles, plasma flows, and laser radiation so as to obtain advanced materials. Ion implantation (ion doping) is one of those methods enabling to change elemental composition, microstructure, and morphology of surface layers that determine such properties as wear resistance, corrosion resistance, and others.
Tomsk scientists developed a new method of ion implantation that dramatically expands the applications of the method in industry. According to Alexander Ryabchikov, the head of the Laboratory for Highly Intensive Ion Implantation, they have been able to experimentally improve the wear resistance of stainless steel by more than a hundred times.
In addition, this technology makes it possible to manufacture details and products with needed specific surface properties. For example, a barrier layer is formed by ion doping of zirconium with titanium, thus preventing oxygen penetration. This can be used to increase the service life and safety of operation of nuclear fuel cells.
Currently, the industrial use of ion doping is constrained by the small thickness of the formed ion-doped layers. The issue to be addressed through the increased kinetic energy of the ion flux implies the use of big accelerators, which is not cost-effective.
'We proposed to increase the ion penetration depth into the material by enhancing the radiation-induced diffusion with high-density ion beams that are two-three orders of magnitude superior to those used in traditional ion implantation,' said Alexander Ryabchikov.
The results obtained in the laboratory confirm the possibility of creating a doped surface layer with a depth of several hundred micrometers, while other methods of ion doping enable a depth of several tens and hundreds of nanometers.
The authors emphasize that the development of highly intensive implantation of ions with low energy could revolutionize the technology of improving material properties. Further research in this field will enable to reduce the cost of the technology application and improve the quality of products.
###
The study was supported by the grant of the Russian Science Foundation.
This year, Russia hosted the 21st International Conference on Surface Modification of Materials by Ion Beams (SMMIB-2019) for the first time. It was held on 26 - 30 August 2019 in Tomsk. Tomsk Polytechnic University was a co-organizer and the venue of the event. The large-scale conference brought together over 150 scientists (from 22 countries) who are leading physicists in the field of ion beam technology and advanced materials.
####
For more information, please click here
Contacts:
Kristina Nabokova
7-382-270-5685
Copyright © Tomsk Polytechnic University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Events/Classes
A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
Construction
Temperature-sensing building material changes color to save energy January 27th, 2023
Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022
A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022
Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |