Home > Press > Nanotherapy: the controlled delivery of chemotherapeutics to fight cancer stem cells
![]() |
Abstract:
Chemotherapy is one of the most used cancer treatments, however, its side effects place it far from the ideal treatment. IMDEA Nanociencia scientists work to improve the effectiveness of chemotherapy using gold nanoparticles as vehicles to administer drugs only where it is needed. Specifically, they have used the combination of two drugs simultaneously on gold nanoparticles that have given good results in the reduction of breast cancer cells. These materials could be the basis of a "Trojan horse" strategy to effectively release chemotherapy within tumors.
Chemotherapy is one of the most used treatments against cancer, together with surgery and radiotherapy. In a chemotherapy treatment, one or several drugs are administered to the patient to remove or damage cancer cells. Nevertheless, the treatment has several drawbacks that are hard to overcome, particularly the side effects. In this case, the inherent toxicity of the drugs employed causes a variety of symptoms including, weakness, nausea and hair loss, placing chemotherapy far from the ideal approach.
In this regard, scientists are trying to improve the efficacy and specificity of chemotherapy using carriers to deliver the drugs only where it is needed. Those based on gold nanostructures are excellent candidates for this objective because of their excellent stability, absence of toxicity and ease of modification with several chemical agents. Furthermore, some gold nanostructures, such as nanoclusters, are fluorescent allowing their use simultaneously for biotracking and imaging purposes.
The group of NanoBiotechnology at IMDEA Nanociencia, led by Prof. Álvaro Somoza, has used gold nanoclusters coated with albumin to facilitate the attachment of two active molecules for the treatment of breast cancer. Particularly, they have used doxorubicin (D), a chemotherapeutic agent that intercalates in the DNA causing cell death, and camptothecin analog SN38 (S), a potent topoisomerase I inhibitor. The modified nanostructures were tested in vitro against breast cancer cells, where the release of chemotherapeutics took place in a controlled manner. Remarkably, the nanotherapy was able to reduce the size and number of mammospheres, a cancer stem cell model. This type of cells present higher resistence to chemotherapy and are responsible for relapses and chemoresistance. What is more, the system combining both drugs presented excellent antitumor activity in different cancer models, thus confirming its promising nanotherapeutic potential.
This is the first time than albumin-stabilized gold nanoclusters have been used to deliver more than one drug, with excellent antitumoral activity, in cancer and cancer stem cells. “Our bifunctional nanostructure could be an excellent solution to overcome the solubility and biodistribution problems of different drugs”, Somoza says. These nanomaterials could be the basis of a Trojan-horse strategy to get the chemotherapeutics effectively inside the tumours. The gold nanoclusters act as the vehicles for carrying the drugs where is needed and release them upon internal stimuli. Whereas chemotherapy research is developing new drugs for cancer treatment, emerging nanotherapies are about building smart vehicles for existing drugs, reducing costs and improving the efficiency of the treatments.
This work is a collaboration between research groups at IMDEA Nanociencia, the Autonomous University of Madrid and the Center for Biological Research (CIB-CSIC). It has been partially funded by the Spanish Ministry for Science, Innovation and Universities, the Regional Government of Comunidad de Madrid, the Spanish Association Against Cancer and the Centre of Excellence Severo Ochoa recognition to IMDEA Nanociencia (2017-2021).
####
For more information, please click here
Contacts:
IMDEA Nanociencia
C/Faraday 9
28049 Madrid, Spain
Tel.: +34 91 299 87 12
www.nanociencia.imdea.org
Twitter: @IMDEA_Nano
Facebook: @IMDEANanociencia
Youtube: IMDEA Nanociencia
Copyright © IMDEA Nanociencia
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cancer
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Nanobiotechnology
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |