Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Sharp meets flat in tunable 2D material: Rice's new atom-flat compounds show promise for optoelectronics, advanced computing

An illustration shows several arrangements of rhenium diselenide and molybdenum diselenide, which form a razor-sharp junction where they meet in a new transition metal dichalcogenide created at Rice University. The material is scalable and its band gap tunable for optoelectronics. (Credit: Ajayan Research Group/Rice University)
An illustration shows several arrangements of rhenium diselenide and molybdenum diselenide, which form a razor-sharp junction where they meet in a new transition metal dichalcogenide created at Rice University. The material is scalable and its band gap tunable for optoelectronics. (Credit: Ajayan Research Group/Rice University)

Abstract:
A Rice University lab wants its products to look sharp, even at the nanoscale. Its latest creation is right on target.

Sharp meets flat in tunable 2D material: Rice's new atom-flat compounds show promise for optoelectronics, advanced computing

Houston, TX | Posted on August 12th, 2019

The Rice lab of materials scientist Pulickel Ajayan has created unique two-dimensional flakes with two distinct personalities: molybdenum diselenide on one side of a sharp divide with rhenium diselenide on the other.

From all appearances, the two-toned material likes it that way, growing naturally — though under tight conditions — in a chemical vapor deposition furnace.

The material is a 2D transition metal dichalcogenide heterostructure, a crystal with more than one chemical component. That's not unusual in itself, but the sharp zigzag boundary between elements in the material reported in the American Chemical Society journal Nano Letters is unique.

Dichalcogenides are semiconductors that incorporate transition metals and chalcogens. They're a promising component for optoelectronic applications like solar cells, photodetectors and sensing devices. Lead author Amey Apte, a Rice graduate student, said they may also be suitable materials for quantum computing or neuromorphic computing, which emulates the structure of the human brain.

Apte said well-known, atomically flat molybdenum-tungsten dichalcogenide heterostructures can be more alloy-like, with diffuse boundaries between their crystal domains. However, the new material — technically, 2H MoSe2-1T' ReSe2 — has atomically sharp interfaces that gives it a smaller electronic band gap than other dichalcogenides.

"Instead of having one unique band gap based on the composition of an alloy, we can tune the band gap in this material in a very controllable way," Apte said. "The strong dissimilarity between two adjacent atomically thin domains opens up new avenues." He said the range of voltages likely spans from 1.5 to 2.5 electron volts.

Growing the materials reliably involved the creation of a phase diagram that laid out how each parameter — the balance of chemical gas precursor, the temperature and the time — affects the process. Rice graduate student and co-author Sandhya Susarla said the diagram serves as a road map for manufacturers.

"The biggest issue in these 2D materials has been that they're not very reproducible," she said. "They're very sensitive to a lot of parameters, because the process is kinetically controlled.

"But our process is scalable because it's thermodynamically controlled," Susarla said. "Manufacturers don't have a lot of parameters to look at. They just have to look at the phase diagram, control the composition and they will get the product every time."

The researchers think they can gain further control of the material's form by tailoring the substrate for epitaxial growth. Having the atoms fall into place in accordance with the surface's own atomic arrangement would allow for far more customization.

Co-authors of the paper are Rice graduate student Lucas Sassi; former postdoctoral researcher Jongwon Yoon, now a senior researcher at the Korea Basic Science Institute; Palash Bharadwaj, the Texas Instruments Assistant Professor of Electrical and Computer Engineering; alumnus Chandra Sekhar Tiwary, now an assistant professor at the Indian Institute of Technology, Kharagpur; and James Tour, the T.T. and W.F. Chao Chair in Chemistry, a professor of computer science and of materials science and nanoengineering; Aravind Krishnamoorthy, Rajiv Kalia, Aiichiro Nakano and Priya Vashishta of the University of Southern California and Jordan Hachtel and Juan Carlos Idrobo of Oak Ridge National Laboratory.

Ajayan is chair of Rice’s Department of Materials Science and NanoEngineering, the Benjamin M. and Mary Greenwood Anderson Professor in Engineering and a professor of chemistry.

The Department of Energy, Office of Science, Basic Energy Sciences and the Air Force Office of Scientific Research supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 4 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.

Follow Rice News and Media Relations on Twitter @RiceUNews.

For more information, please click here

Contacts:
Jeff Falk
713-348-6775


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

2 Dimensional Materials

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Quantum Computing

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project