Home > Press > New synthesis method opens up possibilities for organic electronics
![]() |
New direct arylation polycondensation method opens the door to synthesize various promising n-type semiconducting polymers |
Abstract:
Scientists at Tokyo Institute of Technology (Tokyo Tech) modify a previous synthesis method to create a new semiconducting polymer with remarkable properties which could be used in organic electronic devices such as thin film transistors.
Semiconducting polymers, very large chain-like molecules made from repeating sub-units, are increasingly drawing the attention of researchers because of their potential applications in organic electronic devices. Like most semiconducting materials, semiconducting polymers can be classified as p-type or n-type according to their conducting properties. Although p-type semiconducting polymers have seen dramatic improvements thanks to recent advances, the same cannot be said about their n-type counterparts, whose electron-conducting characteristics (or 'electron mobility') are still poor.
Unfortunately, high-performance n-type semiconducting polymers are necessary for many green applications, such as various types of solar cells. The main challenges holding back the development of n-type semiconducting polymers are the limited molecular design strategies and synthesis procedures available. Among the existing synthesis methods, DArP (which stands for 'direct arylation polycondensation') has shown promising results for producing n-type semiconducting polymers in an environmentally friendly and efficient way. However, until now, the building blocks (monomers) used in the DArP method were required to have an orienting group in order to produce polymers reliably, and this severely limited the applicability of DArP to make high-performance semiconducting polymers.
Luckily, a research team from Tokyo Institute of Technology led by Prof. Tsuyoshi Michinobu found a way around this. They managed to reliably produce two long n-type semiconducting polymers (referred to as P1 and P2) through the DArP method by using palladium and copper as catalysts, which are materials or substances that can be used promote or inhibit specific reactions.
The two polymers were almost identical and contained two thiazole rings–pentagonal organic molecules that contain a nitrogen atom and a sulfur atom. However, the position of the nitrogen atom of the thiazole rings was slightly different between P1 and P2 and, as the researchers found out, this led to significant and unexpected changes in their semiconducting properties and structure. Even though P1 had a more planar structure and was expected to have a higher electron mobility, it was P2 who stole the show. The backbone of this polymer is twisted and looks similar to alternating chain links. More importantly, the researchers were surprised to find that the electron mobility of P2 was forty times higher than that of P1 and even higher than that of the current benchmark n-type semiconducting polymer. "Our results suggest the possibility of P2 being the new benchmark among n-type semiconducting materials for organic electronics," remarks Prof. Michinobu.
In addition, semiconducting devices made using P2 were also remarkably stable, even when stored in air for a long time, which is known to be a weakness of n-type semiconducting polymers. The researchers believe that the promising properties of P2 are because of its more crystalline (ordered) structure compared with P1, which changes the previous notion that semiconducting polymers should have a very planar structure to have better semiconducting properties. "Our new DArP method opens a door for synthesizing various promising n-type semiconducting polymers which cannot be obtained via traditional methods," concludes Prof. Michinobu. This work is another step in the direction towards a greener future with sustainable organic electronics.
####
For more information, please click here
Contacts:
Associate Professor Tsuyoshi Michinobu
School of Materials and Chemical Technology
Email
Tel +81-3-5734-3774
Contact
Public Relations Section, Tokyo Institute of Technology
Email
Tel +81-3-5734-2975
KAZUHIDE HASEGAWA
University Research Administrator
Global Research Communications
Office of Research and Innovation
Tokyo Tech
2-12-1-E3-10 Ookayama, Meguro-ku, Tokyo 152-8550
TEL: +81-3-5734-3257 FAX: +81-3-5734-3683
Copyright © Tokyo Institute of Technology
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Organic Electronics
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024
Thin films
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Chip Technology
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |