Home > Press > How to trick electrons to see the hidden face of crystals: Researchers try a trick for complete 3D analysis of submicron crystals
![]() |
A nylon fibre (light blue), deposited on the carbon carrier (grey), lifts up the crystal (red). This way, the crystal's side face becomes visible to the electron beam (blue). Without the fibre (right figure), the crystal lies flat on the carbon and the metal bar of the sample holder (marbled) occludes the signal. CREDIT © Tim Grüne |
Abstract:
The 3D analysis of crystal structures requires a full 3D view of the crystals. Crystals as small as powder, with edges less than one micrometer, can only be analysed with electron radiation. With electron crystallography, a full 360-degree view of a single crystal is technically impossible. A team of researchers led by Tim Gruene from the Faculty of Chemistry at the University of Vienna modified the holder of the tiny crystals so that a full view becomes possible. Now they presented their solutions in the journal „Nature Communications".
Typically, crystallographers use X-rays to examine their samples. Size, however, matters greatly for X-ray structure analysis: Crystals with edges less than 50 to 100 micrometres are too small to produce a measurable signal. "Electron crystallography is a quite recent development. We demonstrated to our chemist colleagues that we can analyse crystals with edges less than 1 micrometre - this includes many crystals which escape 3D structure determination so far", Tim Grüne says, who is member of the Department of Inorganic Chemistry and head of the Centre for X-ray Structure Analysis.
Limited View
Electrons interact with matter much stronger than X-rays. Submicrometre sized crystals produce characteristic diffraction images when they are irradiated with electrons. These provide the data for structure analysis. However, the sample holder prevents a full 360 degree rotation: Currently only one rotation axis is available, and the metal bars necessary to stabilise the delicate cannot be penetrated by the electrons. Only a rotation of about 75 degrees is possible in either direction. „This gives us a maximum of 300 degree valuable data, which leads to an erroneous structural analysis", says Gruene. He and his colleagues from ETH Zurich and from PSI came up with a neat trick to solve the problem.
Their study presents two solutions to circumvent the problem: They prepared the sample holder so that crystals can be viewed from all sides. One sample holder contains dozens of crystals, more than enough to complete the data and provide an undistorted 3D view.
Tricking the Carrier
A simple, readily available means disturbs the carrier material, an ultrathin carbon layer, with a fine brush. According to Gruene "as a consequence, individual segments of the carbon layer curl up - like when you touch the fruit of touch-me-not. The crystals stick to the curls and achieve a random orientation. One can comfortably select several individual crystals from very different views".
The second solution covers the carbon carrier with nylon fibres. „The surfaces resembles a forest covered chaotically with tree logs", Tim Grüne says. This again leads to many random orientations of the crystals when they are deposited on the sample holder. However, the nylon fibres are deposited with electrospinning, which requires an additional apparatus and is a bit more complex than stroking it with a brush.
"Neat and simple"
Both measures provide data sets from the crystals with a complete 3D structural analysis. This type of combining data sets is common practice in protein crystallography, but much less common in chemical crystallography. Tim Grüne explains, "Our work exploited the fact that data merging works likewise for chemical compounds as it does for proteins. We only needed 5 crystals in both cases to complete the data".
„We did not avoid the problem, but demonstrated how to reveal the hidden faces of the crystals to the electron beam. Both solutions are surprisingly simple and can be realised without much effort", says Tim Grüne.
####
For more information, please click here
Contacts:
Tim Grüne
43-142-777-0202
Copyright © University of Vienna
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Publication in Nature Communications:
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Crystallography
First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020
3-D-printed jars in ball-milling experiments June 29th, 2017
Novel nozzle saves crystals: Double flow concept widens spectrum for protein crystallography March 17th, 2017
Nanocages for gold particles: what is happening inside? March 16th, 2017
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Tools
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Turning up the signal November 8th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |