Home > Press > Skoltech scientists developed a novel method to fine-tune the properties of carbon nanotubes
![]() |
Abstract:
Scientists from the Skoltech Center for Photonics and Quantum Materials (CPQM) have developed a novel method to fine-tune the optoelectrical properties of single-walled carbon nanotubes (SWCNT) by applying an aerosolized dopant solution on their surface, thus opening up new avenues for SWCNT application in optoelectronics. The results of their study were published in The Journal of Physical Chemistry Letters.
This year has witnessed the appearance on the market of foldable and bendable screens, bolstering the development of unique materials and paving the way for the next generation of products of virtually any shapes and sizes. Transparent conductive films (TCF) made using an advanced solution, SWCNT, are seen as the key element of flexible and transparent electronics. As opposed to the customary n-type transparent rigid conductors, such as tin-doped indium oxide or aluminum-doped zinc oxide, the flexible and stretchable SWCNT films have p-type (hole-type) conductivity. However poor control over SWCNT's electronic properties is the main hindrance for their broad industrial use. This is particularly true for optoelectronic applications, which often require efficient control over conductivity and Fermi levels, amongst other things.
Carbon nanotubes are commonly treated with a doping agent.
"SWCNT conductivity is enhanced using one of the three most common doping methods: drop-casting, spin-coating or dip-coating, which can significantly decrease the resistance of pristine SWCNT films (up to 15 times) but fail to ensure spatial uniformity and have poor scalability. This leads to non-uniform evaporation of the liquid solvent, resulting in a coffee-ring effect. Moreover, none of these techniques enable precise control over the Fermi level in the SWCNT films," explains Skoltech PhD student, Alexey Tsapenko.
Scientists from the Skoltech lab directed by Professor Albert Nasibulin developed a new approach ensuring uniform, controllable and easily reproducible aerosol doping of SWCNT. The performances obtained with the new method break new ground, prompting the replacement of the currently prevalent rigid transparent metal-oxide conductors by flexible and transparent electronics, and the creation of new applications based on highly conductive transparent films.
"Our method allows easy tuning of SWCNT film parameters thanks to time-controlled deposition of doping aerosol particles," adds Alexey.
The researchers involved in the project note that the new fine-tuning approach developed specifically for carbon nanotubes can be applied for electronic structures of other low-dimensional materials.
####
For more information, please click here
Contacts:
Alina Chernova
7-905-565-3633
Copyright © Skolkovo Institute of Science and Technology (Skoltech)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Closing the gaps MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Possible Futures
Closing the gaps MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Chip Technology
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Optical computing/Photonic computing
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Closing the gaps MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Closing the gaps MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |