Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Experiments show dramatic increase in solar cell output: Method for collecting two electrons from each photon could break through theoretical solar-cell efficiency limit

Diagram depicts the process of “singlet fission,” which is the first step toward producing two electrons from a single incoming photon of light.

Image courtesy of the researchers
Diagram depicts the process of “singlet fission,” which is the first step toward producing two electrons from a single incoming photon of light. Image courtesy of the researchers

Abstract:
In any conventional silicon-based solar cell, there is an absolute limit on overall efficiency, based partly on the fact that each photon of light can only knock loose a single electron, even if that photon carried twice the energy needed to do so. But now, researchers have demonstrated a method for getting high-energy photons striking silicon to kick out two electrons instead of one, opening the door for a new kind of solar cell with greater efficiency than was thought possible.

Experiments show dramatic increase in solar cell output: Method for collecting two electrons from each photon could break through theoretical solar-cell efficiency limit

Cambridge, MA | Posted on July 5th, 2019

While conventional silicon cells have an absolute theoretical maximum efficiency of about 29.1 percent conversion of solar energy, the new approach, developed over the last several years by researchers at MIT and elsewhere, could bust through that limit, potentially adding several percentage points to that maximum output. The results are described today in the journal Nature, in a paper by graduate student Markus Einzinger, professor of chemistry Moungi Bawendi, professor of electrical engineering and computer science Marc Baldo, and eight others at MIT and at Princeton University.

The basic concept behind this new technology has been known for decades, and the first demonstration that the principle could work was carried out by some members of this team six years ago. But actually translating the method into a full, operational silicon solar cell took years of hard work, Baldo says.

That initial demonstration "was a good test platform" to show that the idea could work, explains Daniel Congreve PhD '15, an alumnus now at the Rowland Institute at Harvard, who was the lead author in that prior report and is a co-author of the new paper. Now, with the new results, "we've done what we set out to do" in that project, he says.

The original study demonstrated the production of two electrons from one photon, but it did so in an organic photovoltaic cell, which is less efficient than a silicon solar cell. It turned out that transferring the two electrons from a top collecting layer made of tetracene into the silicon cell "was not straightforward," Baldo says. Troy Van Voorhis, a professor of chemistry at MIT who was part of that original team, points out that the concept was first proposed back in the 1970s, and says wryly that turning that idea into a practical device "only took 40 years."

The key to splitting the energy of one photon into two electrons lies in a class of materials that possess "excited states" called excitons, Baldo says: In these excitonic materials, "these packets of energy propagate around like the electrons in a circuit," but with quite different properties than electrons. "You can use them to change energy -- you can cut them in half, you can combine them." In this case, they were going through a process called singlet exciton fission, which is how the light's energy gets split into two separate, independently moving packets of energy. The material first absorbs a photon, forming an exciton that rapidly undergoes fission into two excited states, each with half the energy of the original state.

But the tricky part was then coupling that energy over into the silicon, a material that is not excitonic. This coupling had never been accomplished before.

As an intermediate step, the team tried coupling the energy from the excitonic layer into a material called quantum dots. "They're still excitonic, but they're inorganic," Baldo says. "That worked; it worked like a charm," he says. By understanding the mechanism taking place in that material, he says, "we had no reason to think that silicon wouldn't work."

What that work showed, Van Voorhis says, is that the key to these energy transfers lies in the very surface of the material, not in its bulk. "So it was clear that the surface chemistry on silicon was going to be important. That was what was going to determine what kinds of surface states there were." That focus on the surface chemistry may have been what allowed this team to succeed where others had not, he suggests.

The key was in a thin intermediate layer. "It turns out this tiny, tiny strip of material at the interface between these two systems [the silicon solar cell and the tetracene layer with its excitonic properties] ended up defining everything. It's why other researchers couldn't get this process to work, and why we finally did." It was Einzinger "who finally cracked that nut," he says, by using a layer of a material called hafnium oxynitride.

The layer is only a few atoms thick, or just 8 angstroms (ten-billionths of a meter), but it acted as a "nice bridge" for the excited states, Baldo says. That finally made it possible for the single high-energy photons to trigger the release of two electrons inside the silicon cell. That produces a doubling of the amount of energy produced by a given amount of sunlight in the blue and green part of the spectrum. Overall, that could produce an increase in the power produced by the solar cell -- from a theoretical maximum of 29.1 percent, up to a maximum of about 35 percent.

Actual silicon cells are not yet at their maximum, and neither is the new material, so more development needs to be done, but the crucial step of coupling the two materials efficiently has now been proven. "We still need to optimize the silicon cells for this process," Baldo says. For one thing, with the new system those cells can be thinner than current versions. Work also needs to be done on stabilizing the materials for durability. Overall, commercial applications are probably still a few years off, the team says.

Other approaches to improving the efficiency of solar cells tend to involve adding another kind of cell, such as a perovskite layer, over the silicon. Baldo says "they're building one cell on top of another. Fundamentally, we're making one cell -- we're kind of turbocharging the silicon cell. We're adding more current into the silicon, as opposed to making two cells."

The researchers have measured one special property of hafnium oxynitride that helps it transfer the excitonic energy. "We know that hafnium oxynitride generates additional charge at the interface, which reduces losses by a process called electric field passivation. If we can establish better control over this phenomenon, efficiencies may climb even higher." Einzinger says. So far, no other material they've tested can match its properties.

###

The research was supported as part of the MIT Center for Excitonics, funded by the U.S. Department of Energy.

####

For more information, please click here

Contacts:
Sarah McDonnell

617-827-7637

Copyright © Diagram depicts the process of “singlet fission,” which is the first step toward producing two elect

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Perovskites

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project