Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Russian scientists investigate new materials for Li-ion batteries of miniature sensors: Researchers are developing new materials for solid-state thin-film Li-ion batteries for micro and nanodevices

Researchers develop new materials for solid-state thin-film Li-ion batteries for micro and nanodevices.

CREDIT
Peter the Great St.Petersburg Polytechnic University
Researchers develop new materials for solid-state thin-film Li-ion batteries for micro and nanodevices. CREDIT Peter the Great St.Petersburg Polytechnic University

Abstract:
Researchers of Peter the Great St.Petersburg Polytechnic University (SPbPU) are developing new materials for solid-state thin-film Li-ion batteries for micro and nanodevices. The first stage of the project was successfully completed at the laboratory "Functional Materials" of the Institute of Metallurgy, Mechanical Engineering, and Transport SPbPU. The project is supported by the Russian Science Foundation (RScF).

Russian scientists investigate new materials for Li-ion batteries of miniature sensors: Researchers are developing new materials for solid-state thin-film Li-ion batteries for micro and nanodevices

St.Petersburg, Russia | Posted on May 31st, 2019

Part of the results obtained at the first stage of the project was published in the article "Atomic Layer Deposition of NiO to Produce Active Material for Thin-Film Lithium-Ion Batteries" in the journal Coatings, MDPI.

The authors suggested using a new pair of reagents to obtain the electrode materials based on nickel oxide. Researchers studied the fundamental processes taking place during the charge and discharge processes of thin-film material.

It should be noted that the lithium-ion batteries are used not only in phones and laptops but also in the whole class of micro and nanodevices such as wireless sensors, pacemakers and etc. These devices, usually, operate using thin-film current sources. The smaller the device, the thinner the power source is required. Therefore, the materials should have improved electrochemical characteristics to operate longer without additional charge.

"In the frames of the RScF project, we obtained an electrode material based on nickel oxide by atomic layer deposition (ALD) using new processes. We demonstrated its possible application in Li-ion batteries by studying its electrochemical features. In the future, we are planning to improve the materials of electrodes for thin-film batteries. It will bring us closer to a prototype of a solid-state thin-film Li-ion battery produced by ALD. I suppose that the positive results undoubtedly will be interesting for commercial application", says Maxim Maximov, leading researcher of the laboratory "Functional Materials" of the Institute of Metallurgy, Mechanical Engineering and Transport SPbPU.

####

For more information, please click here

Contacts:
Raisa Bestugina

7-812-591-6675

Copyright © Peter the Great St.Petersburg Polytechnic University (SPbPU)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project