Home > Press > Successful installation of the first Photonic Professional GT2 at KEIO University in Japan
Prof. Dr. Kotaro Oka, Dep. of Biosciences and Informatics / Prof. Dr. Keiya Shirahama, Faculty of Science and Technology / Ryosuke Terada, Central Service Facilities for Research / Hayato Tsuruta, Japan Laser Corp. / Tomoaki Mitani, Central Service Facilities for Research (LTR) |
Abstract:
The KEIO University, one of Japan’s most prestigious private university is the first customer using Nanoscribe´s latest 3D printer model Photonic Professional GT2. The installation at the Center for Research, Faculty of Science and Technology will open up completely new opportunities in many fields of applications such as mechanical, electrical, chemical and life sciences.
“Both, the School of Medicine and the Faculty of Science and Technology, will have access to this powerful microfabrication tool”, Mr. Tomoaki Mitani, manager at Central Service Facilities for Research, explained after the successful installation. The range of possible applications extends from the printing of microchannels for electrochemical sensors to the development of novel optical elements and tissue engineering research in 3D cultures.
Nanoscribe´s CEO Martin Hermatschweiler is pleased that users at KEIO can now realize pioneering ideas that were beyond their reach before. Nowadays, more than 180 Nanoscribe systems around the globe are used for various applications in science and industry. “And our user community is steadily growing due to a large number of multi-user facilities”, Hermatschweiler underlines.
The first installation of a Photonic Professional GT2 in Japan could be considered a journey back to the starting point of the technology of two-photon polymerization (2PP) which is the technological base of Nanoscribe’s 3D printers. In 1997 Professor Satoshi Kawata provided the experimental proof of two-photon polymerization in Japan. For more than ten years, Nanoscribe utilizes 2PP’s strength to expose photoresists with extreme focus and highest resolution for the direct fabrication of nano- and microstructures that are otherwise impossible to produce.
Relaunched in December 2018, the model Photonic Professional GT2 pushes the boundaries of nano- and microfabrication offering new solutions for additive manufacturing and maskless lithography. Thanks to optimized hardware and software components as well as new printing materials specially developed for larger volumes, high-resolution microstructures up to a height of 8 mm can now be produced for the first time. While Nanoscribe devices have always been optimally suited to the additive production of the finest structures, objects with submicrometer details from typically 160 nanometers up to the millimeter range on a printing area of up to 100x100 mm² can now be produced in a very short time.
####
About Nanoscribe GmbH
Nanoscribe GmbH develops and provides 3D printers for Microfabrication as well as photoresins and process solutions. Today´s market and technology leader for 3D printing in the nano- and micrometer scale was founded in 2007 as a spin-off of the Karlsruhe Institute of Technology (KIT, Germany) and has evolved to a medium-sized company with more than 65 employees and a subsidiary in Shanghai (China). Worldwide, more than 1,500 scientists at top universities and pioneer companies benefit from Nanoscribe´s groundbreaking technology and award-winning solutions for 3D microfabrication.
For more information, please click here
Contacts:
Anke Werner
Media Contact
Phone +49 721 981 980 501
Copyright © Nanoscribe GmbH
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
3D & 4D printing/Additive-manufacturing
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Fiber sensing scientists invent 3D printed fiber microprobe for measuring in vivo biomechanical properties of tissue and even single cell February 10th, 2023
3D-printed decoder, AI-enabled image compression could enable higher-res displays December 9th, 2022
Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New-Contracts/Sales/Customers
Bruker Light-Sheet Microscopes at Major Comprehensive Cancer Center: New Advanced Imaging Center Powered by Two MuVi and LCS SPIM Microscopes March 25th, 2021
Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020
Veeco Announces Aledia Order of 300mm MOCVD Equipment for microLED Displays: Propel™ Platform First 300mm System with EFEM Designed for Advanced Display Applications October 20th, 2020
GREENWAVES TECHNOLOGIES Announces Next Generation GAP9 Hearables Platform Using GLOBALFOUNDRIES 22FDX Solution October 16th, 2020
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||