Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Self-powered wearable tech

For emerging wearable tech to advance, it needs improved power sources. Now researchers from Michigan State University have provided a potential solution via crumpled carbon nanotube forests, or CNT forests.

CREDIT
Courtesy of MSU
For emerging wearable tech to advance, it needs improved power sources. Now researchers from Michigan State University have provided a potential solution via crumpled carbon nanotube forests, or CNT forests. CREDIT Courtesy of MSU

Abstract:
For emerging wearable tech to advance, it needs improved power sources. Now researchers from Michigan State University have provided a potential solution via crumpled carbon nanotube forests, or CNT forests.

Self-powered wearable tech

East Lansing, MI | Posted on May 8th, 2019

Changyong Cao, director of MSU's Soft Machines and Electronics Laboratory, led a team of scientists in creating highly stretchable supercapacitors for powering wearable electronics. The newly developed supercapacitor has demonstrated solid performance and stability, even when it is stretched to 800% of its original size for thousands of stretching/relaxing cycles.

The team's results, published in the journal Advanced Energy Materials, may spur the development of new stretchable energy electronic systems, implantable biomedical devices, as well as smart packaging systems.

"The key to success is the innovative approach of crumpling vertically aligned CNT arrays, or CNT forests," said Cao, MSU School of Packaging assistant professor. "Instead of having a flat thin film strictly constrained during fabrication, our design enables the three-dimensionally interconnected CNT forest to maintain good electrical conductivity, making it much more efficient, reliable and robust."

Most people know wearable tech in its basic form as iWatches that communicate with smartphones. In this example, that's two pieces of technology that need batteries. Now imagine patches of smart skin for burn victims that can monitor healing while powering themselves - that's the future that Cao's invention can create.

In the medical field, stretchable/wearable electronics are being developed that are capable of extreme contortions and can conform to complicated, uneven surfaces. In the future, these innovations could be integrated into biological tissues and organs to detect disease, monitor improvement and even communicate with medical practitioners.

The vexing problem, however, has been a complementary wearable power source - one that lasts and is durable. Why develop cool new patches if they have to run off bulky battery packs that get hot and require recharging? (That's extreme, but you get the idea.)

Cao's discovery is the first to use crumpled standing CNTs for stretchable energy storage applications, which grow like trees with their canopies tangled on wafers. This forest, however, is merely 10-30 micrometers high. After transferred and crumpled, the CNT forest forms impressive stretchable patterns, like a blanket. The 3D interconnected CNT forest has a larger surface area and can be easily modified with nanoparticles or adapted to other designs.

"It's more robust; it's truly a design breakthrough," said Cao, who's also an assistant professor in mechanical engineering and electrical and computer engineering. "Even when it's stretched up to 300% along each direction, it still conducts efficiently. Other designs lose efficiency, can usually be stretched in only one direction or malfunction completely when they are stretched at much lower levels."

In terms of its ability to collect and store energy, Cao's crumpled nano-forests outperformed most other CNT-based supercapacitors that are known to exist. Even though the top-performing technology can endure thousands of stretching/relaxing cycles, there's still room for improvement.

Metal oxide nanoparticles can be easily impregnated into the crumpled CNTs so that the invention's efficiency improves much more. The newly invented approach should spark the advancement of self-powered stretchable electronic systems, Cao added.

###

Co-authors contributing to this research include: Yihao Zhou, Jeffrey Glass, Philemon Henry and Charles Parker, Duke University; Stephen Ubnoske, U.S. Naval Research Laboratory; Jianfeng Zang, Huazhong University of Science and Technology (China); and Yunteng Cao, Massachusetts Institute of Technology.

This research was funded in part by the United State Department of Agriculture and the National Science Foundation.

####

About Michigan State University
Michigan State University has been working to advance the common good in uncommon ways for 160 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

For more information, please click here

Contacts:
Layne Cameron

517-353-8819

Copyright © Michigan State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original paper:

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Laboratories

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Wearable electronics

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project