Home > Press > From 2D to 1D: Atomically quasi '1D' wires using a carbon nanotube template: New bulk synthesis method for nanowires of molybdenum telluride for nanoelectronics
![]() |
This is a schematic and electron microscopy images of single wires of molybdenum telluride formed inside carbon nanotubes. These 1D reaction vessels are a good fit for the wires, and confine the chemical reactions which create them to one direction. Epitaxial (layer by layer) growth can then proceed along the inner walls of the tubes. CREDIT Tokyo Metropolitan University |
Abstract:
Researchers from Tokyo Metropolitan University have used carbon nanotube templates to produce nanowires of transition metal monochalcogenide (TMM), which are only 3 atoms wide in diameter. These are 50 times longer than previous attempts and can be studied in isolation, preserving the properties of atomically quasi "1D" objects. The team saw that single wires twist when perturbed, suggesting that isolated nanowires have unique mechanical properties which might be applied to switching in nanoelectronics.
Two-dimensional materials have gone from theoretical curiosity to real-life application in the span of less than two decades; the most well-known example of these, graphene, consists of well-ordered sheets of carbon atoms. Though we are far from leveraging the full potential of graphene, its remarkable electrical and thermal conductivity, optical properties and mechanical resilience have already led to a wide range of industrial applications. Examples include energy storage solutions, biosensing, and even substrates for artificial tissue.
Yet, despite the successful transition from 3D to 2D, the barrier separating 2D and 1D has been significantly more challenging to overcome. A class of materials known as transition metal monochalcogenides (TMMs, transition metal + group 16 element) have received particular interest as a potential nanowire in precision nanoelectronics. Theoretical studies have existed for over 30 years, and preliminary experimental studies have also succeeded in making small quantities of nanowire, but these were usually bundled, too short, mixed with bulk material or simply low yield, particularly when precision techniques were involved e.g. lithography. The bundling was particularly problematic; forces known as van der Waals forces would force the wires to aggregate, effectively masking all the unique properties of 1D wires that one might want to access and apply.
Now, a team led by Assistant Professor Yusuke Nakanishi from Tokyo Metropolitan University has succeeded in producing bulk quantities of well-isolated single nanowires of TMM. They used tiny, open-ended rolls of single-layered carbon, or carbon nanotubes (CNTs), to template the assembly and reaction of molybdenum and tellurium into wires from a vapor. They succeeded in producing single isolated wires of TMM, which were only 3-atoms thick and fifty times longer than those made using existing methods. These nanometer-sized CNT "test tubes" were also shown to be not chemically bound to the wires, effectively preserving the properties expected from isolated TMM wires. Importantly, they effectively "protected" the wires from each other, allowing for unprecedented access to how these 1D objects behave in isolation.
While imaging these objects using transmission electron microscopy (TEM), the team found that these wires exhibited a unique twisting effect when exposed to an electron beam. Such behavior has never been seen before and is expected to be unique to isolated wires. The transition from a straight to twisted structure may offer a novel switching mechanism when the material is incorporated into microscopic circuits. The team hope the ability to make well-isolated 1D nanowires might significantly expand our understanding of the properties and mechanisms behind the function of 1D materials.
###
This work was partly supported by a KAKENHI Grant-in-Aid for Young Scientists (18K14088)
####
Contacts:
Go Totsukawa
81-426-772-728
Copyright © Tokyo Metropolitan University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
2 Dimensional Materials
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Imaging
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Chip Technology
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Nanoelectronics
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |