Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Magnetoresistive sensors for near future innovative development

Bristol Robotics Laboratory, Stoke Gifford, United Kingdom

CREDIT
Louis Reed@_louisreed, Unsplash
Bristol Robotics Laboratory, Stoke Gifford, United Kingdom CREDIT Louis Reed@_louisreed, Unsplash

Abstract:
Excluding the information recording and reading technology, in the next 15-20 years, the hypersensitive sensors operating under the magnetoresistive principle will be applied in an extensive number of innovative areas. Among them are biomedicine, flexible electronics, position sensors, and human-computer interaction, various types of monitoring, navigation and autonomous transport. An article about this was published in the industry journal IEEE Transactions on Magnetics.

Magnetoresistive sensors for near future innovative development

Vladivostok, Russia | Posted on March 22nd, 2019

Scientists of Far Eastern Federal University (FEFU) teamed up with an international group of experts to identify five of the most promising application areas for magnetoresistive sensors. Having carried out a comprehensive analytical work, the researchers drew up development roadmaps of the sensor industry for the next 15-20 years and outlined the most probable ways to commercialize scientific results in this research area.

"Magnetoresistive sensors are distinguished by high sensitivity, low cost, low power consumption, and compactness. Their properties vary depending on the application. Today, this industry develops rapidly, sensors sensitivity increases constantly, the path from research to real technology takes a short time. We believe there is a very wide application area for such sensors. For example, in biomedicine, due to supersensitive sensors that receive signals from the magnetically marked organs of the human body and DNA molecules, it will be possible to accurately determine potential genetic diseases and select a treatment that fits best. Corresponding systems may appear around 2030." Said Alexander Samardak, Associate professor of the Department of Computer Systems, FEFU School of Natural Sciences.

The scientist went on that the application of magnetoresistive technology is promising in such flexible portable electronic gadgets like smartphones, wristbands etc. Devices operating on such sensors are capable of withstanding a large number of flexion/extension and stretching cycles without loss of sensitivity properties. The sensors' resistance to mechanical deformation is proceeding to increase along with further progress in this area. Users will experience flexible devices in 2023 - 2025, and super flexible - around 2030. By this time, give or take, highly sensitive and not expensive in production durable sensors capable of detecting fast-flowing processes should appear. Instead of a silicon substrate, it will be possible to print them even on paper and textiles.

As for the human-computer interaction systems, the sensor-controlled wheelchair commanded by the head movement was developed back in 2003.

"Today, the movements of different parts of the human body can be effectively captured, processed, and recorded by means of magnetoresistive and inertial sensors. Highly likely, such data will soon come in handy for the development of AR and VR systems and applications," added Alexey Ognev, a professor at the Department of Computer Systems, FEFU School of Natural Sciences.

One of the laboratories for the development of such VR and VR systems operates in FEFU within the National Technology Initiative Center for Virtual and Augmented Reality opened in the university.

AR / VR devices equipped with high sensitivity sensors may appear in the very next upcoming years. Ubiquitous control joysticks will be replaced with human-wearable controllers. Sensors integrated into biomechanical artificial limbs will increase the accuracy of their movements.

Approximately by 2032 autonomous vehicles systems will be fully accomplished and safely operate and managed without human participation.

Alexander Samardak pointed out that magnetic sensor networks are used to implement projects in the following areas: smart homes, smart medicine, including psychological help and assistance for people with disabilities, as well as a fundamentally different level of smart transport. All human life will be literally interlaced by sensory systems. Large amounts of readout data will be stored in the "cloud" and will be available for a person remotely from a smartphone or other personal gadgets. With time, a need in stable, reliable and cheap in the production smart sensors will only increase.

Scientists note that the closest competitors of magnetoresistive sensors on the market are sensors operates under the principle of Hall effect.

###

Researchers from Russia, China, Taiwan, South Korea, Singapore, the Czech Republic, Portugal, the UK, and the USA took part in the analytical work.

Scientists drew their conclusions based on the analysis of patent statistics over the past 60 years. They also have studied specialized scientific publications, taking into account the state of the art and rapid progress of the magnetoresistive technology industry.

FEFU runs a priority project "Materials" and the NTI Center for Virtual and Augmented Reality (Grant No. 1/1251/2018, October 16, 2018), where among other things researchers are actively engaged in the study of magnetoresistive sensor systems and properties of magnetic materials.

####

For more information, please click here

Contacts:
Alexander Zverev

Copyright © Far Eastern Federal University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Magnetism/Magnons

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Automotive/Transportation

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Leading the charge to better batteries February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project