Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors

(a) Illustration showing an AFM tip indenting the TMD/polymer structure to introduce local strain. (b) Patterned single photon emission in WSe2 induced by AFM indentation of the letters 'NRL' and 'AFRL'. (c) AFM indents produce single photon emitter 'ornaments' on a monolayer WSe2 'Christmas tree.'

CREDIT
US Naval Research Laboratory
(a) Illustration showing an AFM tip indenting the TMD/polymer structure to introduce local strain. (b) Patterned single photon emission in WSe2 induced by AFM indentation of the letters 'NRL' and 'AFRL'. (c) AFM indents produce single photon emitter 'ornaments' on a monolayer WSe2 'Christmas tree.' CREDIT US Naval Research Laboratory

Abstract:
Scientists at the U.S. Naval Research Laboratory (NRL) and the Air Force Research Laboratory (AFRL) have developed a way to directly write quantum light sources, which emit a single photon of light at a time, into monolayer semiconductors such as tungsten diselenide (WSe2). Single photon emitters (SPEs), or quantum emitters, are key components in a wide range of nascent quantum-based technologies, including computing, secure communications, sensing and metrology.

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors

Washington, DC | Posted on February 15th, 2019


In contrast with conventional light emitting diodes which emit billions of photons simultaneously to form a steady stream of light, an ideal SPE generates exactly one photon on demand, with each photon indistinguishable from another. These characteristics are essential for photon-based quantum technologies under development. In addition, such capabilities should be realized in a material platform which enables precise, repeatable placement of SPEs in a fully scalable fashion compatible with existing semiconductor chip manufacturing.

NRL scientists used an atomic force microscope (AFM) to create nanoscale depressions or indents in a single monolayer of WSe2 on a polymer film substrate. A highly localized strain field is produced around the nano-indent which creates the single photon emitter state in the WSe2. Time correlated measurements performed at AFRL of this light emission confirmed the true single photon nature of these states. These emitters are bright, producing high rates of single photons, and spectrally stable, key requirements for emerging applications.

"This quantum calligraphy allows deterministic placement and real time design of arbitrary patterns of SPEs for facile coupling with photonic waveguides, cavities and plasmonic structures," said Berend Jonker, Ph.D., senior scientist and principal investigator. "Our results also indicate that a nano-imprinting approach will be effective in creating large arrays or patterns of quantum emitters for wafer scale manufacturing of quantum photonic systems."

Dr. Matthew Rosenberger, lead author of the study, points out the importance of this discovery stating, "In addition to enabling versatile placement of SPEs, these results present a general methodology for imparting strain into two dimensional (2D) materials with nanometer-scale precision, providing an invaluable tool for further investigations and future applications of strain engineering of 2D devices."

The results of this study pave the way for the use of 2D materials as solid state hosts for single photon emitters in applications relevant to the Department of Defense (DoD) mission, such as secure communications, sensing and quantum computation. Such applications enable communication between distant DoD forces which is not vulnerable to eavesdropping or decryption, an essential requirement to insure the safety of the warfighter.

Quantum computation on a chip provides onboard capability to rapidly analyze very large data sets acquired by sensor arrays, so that the entire data set does not have to be transmitted, reducing bandwidth requirements. The research results are reported in the January 2019 ACS Nano (DOI: 10.1021/acsnano.8b08730).

The research team included Dr. Matthew Rosenberger, Dr. Hsun-Jen Chuang, Dr. Saujan Sivaram, Dr. Kathleen McCreary, and Dr. Berend Jonker from the NRL Materials Science and Technology Division; and Dr. Chandriker Kavir Dass and Dr. Joshua R. Hendrickson from the AFRL Sensors Directorate. Both Rosenberger and Sivaram hold National Research Council (NRC) fellowships at NRL, and Chuang holds an American Society for Engineering Education (ASEE) fellowship at NRL.

####

For more information, please click here

Contacts:
Daniel Parry

202-767-2326

Copyright © Naval Research Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Optical computing/Photonic computing

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

Quantum nanoscience

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project