Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Optimization of alloy materials: Diffusion processes in nano particles decoded

Electron microscopic image of an aluminium nano-precipitate with atom-sized diffusion channels

CREDIT
© TU Graz / FELMI
Electron microscopic image of an aluminium nano-precipitate with atom-sized diffusion channels CREDIT © TU Graz / FELMI

Abstract:
Aluminium alloys have unique material properties and are indispensable materials in aircraft manufacturing and space technology. With the help of high-resolution electron tomography, researchers at TU Graz have for the first time been able to decode mechanisms crucial for understanding these properties. The research results have recently been published in Nature Materials.

Optimization of alloy materials: Diffusion processes in nano particles decoded

Graz, Austria | Posted on November 13th, 2018

Nano structures responsible for material quality

Alloy elements such as scandium and zircon are added to the aluminium matrix to improve the strength, corrosion resistance and weldability of aluminium alloys. After further treatment, tiny roundish particles only a few nanometres in size, so-called nano-precipitates, are formed. Their form, atomic structure and the 'struggle' of the scandium and zircon atoms for the 'best place' in the crystal lattice are decisive for the properties and usability of the material.

Researchers at TU Graz analysed these structures with the help of the Austrian Scanning Transmission Electron Microscope (ASTEM) at the Graz Centre for Electron Microscopy (ZFE). The device can produce high-resolution element mappings of three-dimensional structures. 'The thus arrived at tomographic analysis provided an image which, surprisingly, could not be interpreted according to the previous level of knowledge,' said Gerald Kothleitner, head of the working group for analytic transmission electron microscopy at the TU Graz's Institute of Electron Microscopy and Nanoanalysis. 'We detected anomalies in the generated core-shell structures. On the one hand, we found higher quantities of aluminium in the nano-precipitates then we had presumed. On the other hand, we discovered a zircon-enriched core as well as border zones between the core and shell with an almost perfect composition and crystal structure.'

Quantum mechanics and Monte Carlo methods provide answers

To track down this phenomenon of self-organisation, researchers from the Institute of Electron Microscopy and Nanoanalysis (FELMI) and the Institute of Materials Science, Joining and Forming (IMAT) fell back on quantum mechanical calculations and simulations. It was found that the system separates itself and forms atomically narrow channels in which the foreign atoms can diffuse. Atoms encountering each other block these channels and stabilise the system. Doctoral student Angelina Orthacker, whose thesis was funded by the Austrian Cooperative Research (ACR), gives a graphic explanation of the movement of the atoms: 'The diffusion process can be compared with the formation of an emergency corridor in an urban area with heavy traffic. The traffic manages to organise itself in a split second to enable the free flow of emergency vehicles. But it only takes a few individual vehicles to block the emergency corridor thus stopping it from working.' And this is exactly the same behaviour in the interior of aluminium alloys. 'Emergency corridors' promote the material transport of scandium and zircon atoms and even slight disturbances stop this transport reaction. The research team presumes that the new findings about these diffusion processes also play a role in other multi-component alloys. Their properties can now be adjusted even more.

###

This research area is anchored in the Field of Expertise "Advanced Materials Science", one of five research foci of TU Graz. Participating researchers are members of NAWI Graz - Natural Sciences.

####

For more information, please click here

Contacts:
Gerald KOTHLEITNER

43-316-873-8336

Copyright © Graz University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Tools

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Aerospace/Space

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

The National Space Society Congratulates Blue Origin on the Inaugural Flight of New Glenn: The Heavy Lift Reusable Rocket Will Open New Frontiers and Provide Healthy Competition January 17th, 2025

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project