Home > Press > Researchers use sound waves to advance optical communication
![]() |
Illinois mechanical science and engineering student and lead author of a new study Benjamin Sohn holds a device that uses sound waves to produce optical diodes tiny enough to fit onto a computer chip. Photo by L. Brian Stauffer |
Abstract:
Illinois researchers have demonstrated that sound waves can be used to produce ultraminiature optical diodes that are tiny enough to fit onto a computer chip. These devices, called optical isolators, may help solve major data capacity and system size challenges for photonic integrated circuits, the light-based equivalent of electronic circuits, which are used for computing and communications.
blog posts
CHAMPAIGN, Ill. —Illinois researchers have demonstrated that sound waves can be used to produce ultraminiature optical diodes that are tiny enough to fit onto a computer chip. These devices, called optical isolators, may help solve major data capacity and system size challenges for photonic integrated circuits, the light-based equivalent of electronic circuits, which are used for computing and communications.
Isolators are nonreciprocal or “one-way” devices similar to electronic diodes. They protect laser sources from back reflections and are necessary for routing light signals around optical networks. Today, the dominant technology for producing such nonreciprocal devices requires materials that change their optical properties in response to magnetic fields, the researchers said.
“There are several problems with using magnetically responsive materials to achieve the one-way flow of light in a photonic chip,” said mechanical science and engineering professor and co-author of the study Gaurav Bahl. “First, industry simply does not have good capability to place compact magnets on a chip. But more importantly, the necessary materials are not yet available in photonics foundries. That is why industry desperately needs a better approach that uses only conventional materials and avoids magnetic fields altogether.”
In a study published in the journal Nature Photonics, the researchers explain how they use the minuscule coupling between light and sound to provide a unique solution that enables nonreciprocal devices with nearly any photonic material.
However, the physical size of the device and the availability of materials are not the only problems with the current state of the art, the researchers said.
“Laboratory attempts at producing compact magnetic optical isolators have always been plagued by large optical loss,” said graduate student and lead author Benjamin Sohn. “The photonics industry cannot afford this material-related loss and also needs a solution that provides enough bandwidth to be comparable to the traditional magnetic technique. Until now, there has been no magnetless approach that is competitive.”
The new device is only 200 by 100 microns in size – about 10,000 times smaller than a centimeter squared – and made of aluminum nitride, a transparent material that transmits light and is compatible with photonics foundries. “Sound waves are produced in a way similar to a piezoelectric speaker, using tiny electrodes written directly onto the aluminum nitride with an electron beam. It is these sound waves that compel light within the device to travel only in one direction. This is the first time that a magnetless isolator has surpassed gigahertz bandwidth,” Sohn said.
The researchers are looking for ways to increase bandwidth or data capacity of these isolators and are confident that they can overcome this hurdle. Once perfected, they envision transformative applications in photonic communication systems, gyroscopes, GPS systems, atomic timekeeping and data centers.
“Data centers handle enormous amounts of internet data traffic and consume large amounts of power for networking and for keeping the servers cool,” Bahl said. “Light-based communication is desirable because it produces much less heat, meaning that much less energy can be spent on server cooling while transmitting a lot more data per second.”
Aside from the technological potential, the researchers can’t help but be mesmerized by the fundamental science behind this advancement.
“In everyday life, we don’t see the interactions of light with sound,” Bahl said. “Light can pass through a transparent pane of glass without doing anything strange. Our field of research has found that light and sound do, in fact, interact in a very subtle way. If you apply the right engineering principles, you can shake a transparent material in just the right way to enhance these effects and solve this major scientific challenge. It seems almost magical.”
The United States Defense Advanced Research Projects Agency and the Air Force Research Laboratory supported this research.
####
For more information, please click here
Contacts:
LOIS YOKSOULIAN
PHYSICAL SCIENCES EDITOR
217-244-2788
Gaurav Bahl
217-300-2194
Copyright © UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Chip Technology
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Optical computing/Photonic computing
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Military
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Photonics/Optics/Lasers
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |