Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > 'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions

Two atoms, initially prepared in different locations, exchange their positions along the blue path, whereas no exchange occurs along the red path. In quantum mechanics, it is possible that the atoms take simultaneously both ways. As a result of such a tricky manipulation, it is fundamentally impossible at the end to determine the origin of the atoms, and their spin orientations (denoted by arrows) become entangled.
CREDIT
© Andrea Alberti/Uni Bonn
Two atoms, initially prepared in different locations, exchange their positions along the blue path, whereas no exchange occurs along the red path. In quantum mechanics, it is possible that the atoms take simultaneously both ways. As a result of such a tricky manipulation, it is fundamentally impossible at the end to determine the origin of the atoms, and their spin orientations (denoted by arrows) become entangled. CREDIT © Andrea Alberti/Uni Bonn

Abstract:
An international team of researchers has proposed a new way to make atoms or ions indistinguishable by swapping their positions. These particles are then expected to exhibit exotic properties. The study involved physicists from the University of Bonn, the Austrian Academy of Sciences, and the University of California. The work has now been published in Physical Review Letters.

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions

Bonn, Germany | Posted on October 18th, 2017

Imagine that you are playing the game of 'Find the Lady' - in fact, a very simple version of it: The croupier is no hardened con artist, but rather a thoroughly honest woman. And on the table in front of her are just two cups, not three. These are made from black plastic and look so darned alike that - try as you might - you cannot distinguish one from the other.

The croupier now begins to move both cups backward and forward. Her moves are very fast and dexterous. Nevertheless, with a little concentration, you manage to follow her moves. At the end, you can correctly state which of the cups was originally on the left and which on the right.

But what would happen if you close your eyes when the cups are being moved? In this case, you can only guess: after all, to you, both cups look completely identical. Of course, they aren't really so: cup 1 remains cup 1, no matter how often it changes places with cup 2.

However, in the world of the smallest things, experiments can be performed in which the thing of identity is not that clear. Playing a game such as 'Find the Lady' in the quantum world has now been proposed by physicists at the Institute of Applied Physics (IAP) of the University of Bonn together with their colleagues from Austria and the USA.

In different places at the same time

In the quantum world, the cups are replaced by two atoms that are exactly in the same atomic state. "Such atoms can be produced in specialized laboratories with state-of-the-art techniques," explains Prof. Dieter Meschede from the IAP. "They are actually completely the same and only differ due to the position at which they are located."

When you play 'Find the Lady' in the world of atoms, you have some extra freedom. For instance, researchers can count on the quantum mechanical phenomenon according to which particles can be in two different places at the same time. By cleverly using this phenomenon, atom 1 and 2 can, with a certain amount of luck, swap places without anyone noticing.

In other words: at the end of the quantum manipulation, the observer has no way to say - as a matter of principle - whether atom 1 is actually still atom 1 or whether it has been swapped with atom 2. For standard cups, it would still be possible to tell them apart reliably using their tiniest differences such as a microscopically small dent. This is not the case for identically prepared atoms; they are exactly the same. "At the end of the experiment, it is thus no longer possible - in whatever form - to identify which of the two atoms is number 1 and which is number 2," explains Dr. Andrea Alberti from the IAP.

This also has philosophical implications. The German philosopher Gottfried Wilhelm Leibniz (1646-1716) is credited with the assertion that two objects are identical when no differences can be discerned between them. Following Leibniz's logic, the switched atoms must have then lost part of their individuality: they are two, yet they are somehow one.

Astoundingly, both of them are also 'connected' to each other after switching places: certain properties of both particles such as the spin - the direction of rotation of an atom - depend upon both particles. If you observe the spin orientation of atom 1, then you will immediately know the spin orientation of atom 2 - even without directly observing it. "It is as if you throw two coins independently of each other," explains Andrea Alberti. "If one coin shows heads, then this must also be the case for the other." Physicists talk of 'entanglement'.

The IAP researchers are currently working on putting their theoretical proposal into practice. The experiment can also be performed in a modified form with other particles such as ions - a route that the colleagues at the Institute for Quantum Optics and Quantum Information in Innsbruck of the Austrian Academy of Sciences want to take. "We expect from these studies, in which we control with high precision exactly two quantum particles, new findings on the fundamental quantum mechanical exchange principle," hopes Alberti.

#

####

For more information, please click here

Contacts:
Andrea Alberti

49-228-733-471

Copyright © University of Bonn

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication: C. F. Roos, A. Alberti, D. Meschede, P. Hauke, and H. Häffner: Revealing Quantum Statistics with a Pair of Distant Atoms; Physical Review Letters; Internet:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Quantum Physics

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

Quantum nanoscience

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Programmable electron-induced color router array May 14th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project