Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > On the road to fire-free, lithium-ion batteries made with asphalt

Hoverboard, cell phone and vehicle batteries could become safer with the addition of a natural asphalt.
Credit: maxbelchenko/Shutterstock.com
Hoverboard, cell phone and vehicle batteries could become safer with the addition of a natural asphalt. Credit: maxbelchenko/Shutterstock.com

Abstract:
Lithium-ion batteries can be found in everything from cell phones to hoverboards, but these power sources have recently made headlines for the fires they have inadvertently caused. To address these safety hazards, scientists report in ACS Nano that they are paving the way to better batteries with a naturally occurring form of asphalt.

On the road to fire-free, lithium-ion batteries made with asphalt

Washington, DC | Posted on October 12th, 2017

Since the lithium-ion battery first hit the market in 1991, it has become the industry standard due to its light weight and high efficiency. But the lithium-ion battery can act as its own worst enemy. As lithium ions move between electrodes in the battery, some stray. These rogue ions create microfibers, known as dendrites, that increase the risk of fires. To address this issue, scientists are looking to develop a different material to pair with lithium. Researchers have been pursing graphene and advanced nanomaterials as options because they block dendrite formation. But these routes have stalled due to high costs and other complicating factors. James M. Tour and colleagues wanted to go in a different direction and see if a natural, low-cost asphalt, which has a structure similar to graphene, would be a good alternative.

The team started by mixing asphalt with graphene nanoribbons to boost its conductivity. They then coated copper foil, the traditional lithium-ion battery substrate, with the asphalt-nanoribbon mixture. Next, lithium was plated uniformly onto the substrate, allowing for equal distribution of the ions. Testing showed that the resulting device had a higher conductivity than traditional lithium-ion batteries. In addition, the asphalt battery was more than 10 times faster at recharging than current commercial batteries. And the simple, inexpensive method the researchers developed resulted in no dendrite formation, an outcome that could one day contribute to a safer battery.

###

The authors acknowledge funding from the U.S. Air Force Office of Basic Research, Celgard LLC, Merck KGaA and Prince Energy.

The authors declare the following competing financial interest: Rice University has filed patents on the processes described in the paper. Those patents are under license or to be licensed by companies in which none of the authors are employees, officers or directors. An author has stock in one of the companies, and all potential conflicts are monitored by regular disclosure to the Rice University Office of Sponsored Projects and Research Compliance.

####

About American Chemical Society
The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Katie Cottingham

301-775-8455


James M. Tour, Ph.D.
Department of Materials Science and NanoEngineering
Smalley-Curl Institute and the NanoCarbon Center
Rice University
Houston, TX 77005
Phone: 713-348-6246

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

"Ultrafast Charging High Capacity Asphalt-Lithium Metal Batteries":

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project