Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > On the road to fire-free, lithium-ion batteries made with asphalt

Hoverboard, cell phone and vehicle batteries could become safer with the addition of a natural asphalt.
Credit: maxbelchenko/Shutterstock.com
Hoverboard, cell phone and vehicle batteries could become safer with the addition of a natural asphalt. Credit: maxbelchenko/Shutterstock.com

Abstract:
Lithium-ion batteries can be found in everything from cell phones to hoverboards, but these power sources have recently made headlines for the fires they have inadvertently caused. To address these safety hazards, scientists report in ACS Nano that they are paving the way to better batteries with a naturally occurring form of asphalt.

On the road to fire-free, lithium-ion batteries made with asphalt

Washington, DC | Posted on October 12th, 2017

Since the lithium-ion battery first hit the market in 1991, it has become the industry standard due to its light weight and high efficiency. But the lithium-ion battery can act as its own worst enemy. As lithium ions move between electrodes in the battery, some stray. These rogue ions create microfibers, known as dendrites, that increase the risk of fires. To address this issue, scientists are looking to develop a different material to pair with lithium. Researchers have been pursing graphene and advanced nanomaterials as options because they block dendrite formation. But these routes have stalled due to high costs and other complicating factors. James M. Tour and colleagues wanted to go in a different direction and see if a natural, low-cost asphalt, which has a structure similar to graphene, would be a good alternative.

The team started by mixing asphalt with graphene nanoribbons to boost its conductivity. They then coated copper foil, the traditional lithium-ion battery substrate, with the asphalt-nanoribbon mixture. Next, lithium was plated uniformly onto the substrate, allowing for equal distribution of the ions. Testing showed that the resulting device had a higher conductivity than traditional lithium-ion batteries. In addition, the asphalt battery was more than 10 times faster at recharging than current commercial batteries. And the simple, inexpensive method the researchers developed resulted in no dendrite formation, an outcome that could one day contribute to a safer battery.

###

The authors acknowledge funding from the U.S. Air Force Office of Basic Research, Celgard LLC, Merck KGaA and Prince Energy.

The authors declare the following competing financial interest: Rice University has filed patents on the processes described in the paper. Those patents are under license or to be licensed by companies in which none of the authors are employees, officers or directors. An author has stock in one of the companies, and all potential conflicts are monitored by regular disclosure to the Rice University Office of Sponsored Projects and Research Compliance.

####

About American Chemical Society
The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Katie Cottingham

301-775-8455


James M. Tour, Ph.D.
Department of Materials Science and NanoEngineering
Smalley-Curl Institute and the NanoCarbon Center
Rice University
Houston, TX 77005
Phone: 713-348-6246

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

"Ultrafast Charging High Capacity Asphalt-Lithium Metal Batteries":

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project