Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems

In this image, light strikes a molecular lattice deposited on a metal substrate. The molecules can quickly exchange energy with the metal below, a mechanism that leads to a much faster response time for the emission of fluorescent light from the lattice.

Courtesy of the researchers
In this image, light strikes a molecular lattice deposited on a metal substrate. The molecules can quickly exchange energy with the metal below, a mechanism that leads to a much faster response time for the emission of fluorescent light from the lattice. Courtesy of the researchers

Abstract:
Two-dimensional materials called molecular aggregates are very effective light emitters that work on a different principle than typical organic light-emitting diodes (OLEDs) or quantum dots. But their potential as components for new kinds of optoelectronic devices has been limited by their relatively slow response time. Now, researchers at MIT, the University of California at Berkeley, and Northeastern University have found a way to overcome that limitation, potentially opening up a variety of applications for these materials.

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems

Cambridge, MA | Posted on September 19th, 2017

The findings are described in the journal Proceedings of the National Academy of Sciences, in a paper by MIT associate professor of mechanical engineering Nicholas X. Fang, postdocs Qing Hu and Dafei Jin, and five others.

The key to enhancing the response time of these 2-D molecular aggregates (2DMA), Fang and his team found, is to couple that material with a thin layer of a metal such as silver. The interaction between the 2DMA and the metal that is just a few nanometers away boosts the speed of the material's light pulses more than tenfold.

These 2DMA materials exhibit a number of unusual properties and have been used to create exotic forms of matter, known as Bose-Einstein condensates, at room temperature, while other approaches required extreme cooling. They have also been applied in technologies such as solar cells and light-harvesting organic antennas. But the new work for the first time identifies the strong influence that a very close sheet of metal can have on the way these materials emit light.

In order for these materials to be useful in devices such as photonic chips -- which are like semiconductor chips but carry out their operations using light instead of electrons -- "the challenge is to be able to switch them on and off quickly," which had not been possible before, Fang says.

With the metal substrate nearby, the response time for the light emission dropped from 60 picoseconds (trillionths of a second) to just 2 picoseconds, Fang says: "This is pretty exciting, because we observed this effect even when the material is 5 to 10 nanometers away from the surface," with a spacing layer of polymer in between. That's enough of a separation that fabricating such paired materials in quantity should not be an overly demanding process. "This is something we think could be adapted to roll-to-roll printing," he says.

If used for signal processing, such as sending data by light rather than radio waves, Fang says, this advance could lead to a data transmission rate of about 40 gigahertz, which is eight times faster than such devices can currently deliver. This is "a very promising step, but it's still very early" as far as translating that into practical, manufacturable devices, he cautions.

The team studied only one of the many kinds of molecular aggregates that have been developed, so there may still be opportunities to find even better variations. "This is actually a very rich family of luminous materials," Fang says.

Because the responsiveness of the material is so strongly influenced by the exact proximity of the nearby metal substrate, such systems could also be used for very precise measuring tools. "The interaction is reduced as a function of the gap size, so it could now be used if we want to measure the proximity of a surface," Fang says.

As the team continues its studies of these materials, one next step is to study the effects that patterning of the metal surface might have, since the tests so far only used flat surfaces. Other questions to be addressed include determining the useful lifetimes of these materials and how they might be extended.

Fang says a first prototype of a device using this system might be produced "within a year or so."

###

The team also included Soon Hoon Nam at MIT; Jun Xiao, Xiaoze Liu, and Xiang Zhang at UC Berkeley; and Yongmin Liu at Northeastern University. The work was supported by the National Science Foundation, the Masdar Institute of Science and Technology, and the King Abdullah University of Science and Technology.

####

For more information, please click here

Contacts:
Karl-Lydie Jean-Baptiste

617-253-1682

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

2 Dimensional Materials

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Wireless/telecommunications/RF/Antennas/Microwaves

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Chip-based dispersion compensation for faster fibre internet: SUTD scientists developed a novel CMOS-compatible, slow-light-based transmission grating device for the dispersion compensation of high-speed data, significantly lowering data transmission errors and paving the way for June 30th, 2023

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

Possible Futures

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Chip Technology

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Optical computing/Photonic computing

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Discoveries

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Announcements

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Photonics/Optics/Lasers

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Research partnerships

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project