Home > Press > Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries
![]() |
Strategies for improving the lithium storage properties of 2D nanosheets. CREDIT ©Science China Press |
Abstract:
Li-ion batteries (LIBs) are attractive as the major energy storage devices due to their higher specific energy density, lower self-discharge, and lower memory effect. Among the components of batteries, electrode materials play a key role in enhancing electrochemical properties. Thus, the development of advanced electrode materials for high-performance LIBs has been the major objective in the related research fields.
Two-dimensional (2D) nanomaterials, including graphene, transition metal oxide (TMO) nanosheets, transition metal dichalcogenide (TMD) nanosheets, etc., are composed of one or several monolayers of atoms (or unit cells). They have been paid much attention in recent years, due to their outstanding physical and chemical properties in contrast to their bulk counterparts. The integration of 2D nanomaterials with energy storage devices could provide promising opportunities to overcome the major challenges driven by ever-growing global energy demands. Unfortunately, the direct use of these sheet-like materials has met with numerous challenges, such as serious self-agglomerating tendency, relatively low conductivity and the obvious volume changes over repeated charging-discharging cycles.
In a new review paper published in National Science Review, scientists from Australia at Queensland University of Technology and University of Wollongong summarized recent progress on the strategies for enhancing the lithium storage performance of 2D nanomaterials. These strategies for manipulating the structures and properties are expected to meet the major challenges for advanced nanomaterials in energy storage applications. Co-authors Jun Mei, Yuanwen Zhang, Ting Liao, Ziqi Sun and Shi Xue Dou classified these strategies into three primary strategies, including hybridization with conductive materials, surface/edge functionalization, and structural optimization.
"The strategy of hybridization is the most common and widely studied one for TMOs/TMDs-based nanocomposites, in which some conductive nanostructures, e.g. nano-carbon, carbon nanotubes (CNTs), graphene, organic polymers, metallic nanoparticles, etc., are introduced to hybridize with TMO/TMD nanosheets to improve the overall conductivity and accommodate the volume expansion of metal oxide or sulfide nanomaterials during the repeated charging/discharging cycles." they state.
"The second strategy is edge/surface functionalization, which can be achieved by atom/ion doping or defect engineering at the edges or on the surfaces of the 2D nanomaterials. The implantation of heteroatoms or ions into 2D nanomaterials helps to modulate the electronic structure, the surface chemical reactivity, or the interlayer spacing of the 2D nanomaterials, and further enhances the lithium ions storage capacity," they add. "The third strategy of structure optimization is often realized by controlling some structural parameters during fabrication, such as thickness, size, pores, or surface morphology, which have significant impacts on the structure-dependent properties and the electrochemical performance, and are beneficial for alleviating the inevitable self-restacking and exposing more active sites."
The scientists believe "these effective strategies for improving the lithium storage of 2D nanomaterials will be good reference points for scientists and researchers in the related fields of materials, chemistry, and nanotechnology, who are looking forward to developing superior next-generation rechargeable batteries".
####
About Science China Press
The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country's rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.
For more information, please click here
Contacts:
Ziqi Sun
Copyright © Science China Press
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
See the article: Jun Mei, Yuanwen Zhang, Ting Liao, Ziqi Sun and Shi Xue Dou
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
2 Dimensional Materials
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Graphene/ Graphite
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Research partnerships
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |