Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data

Abstract:
Magnets and magnetic phenomena underpin the vast majority of modern data storage, and the measurement scales for research focused on magnetic behaviors continue to shrink with the rest of digital technology. Skyrmions, for example, are a kind of nanomagnet, comprised of a spin-correlated ensemble of electrons acting as a topological magnet on certain microscopic surfaces. The precise properties, like spin orientation, of such nanomagnets can store information. But how might you go about moving or manipulating these nanomagnets at will to store the data you want?

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data

Washington, DC | Posted on July 21st, 2017

New research from a German-U.S. collaboration now demonstrates such read/write ability using bursts of electrons, encoding topological energy structures robustly enough for potential data storage applications. As the group reports this week in Applied Physics Letters, from AIP Publishing, the magnetization of these ensemble excitations, or quasiparticles, is controlled by tailoring the profile of the electron pulses, varying either the total number of electrons or their width in space.

"The work shows how magnetization of nanoscale magnets can be steered by intense ultrashort electron pulses," said Alexander Schäffer, a doctoral student at Martin-Luther-Universität Halle-Wittenberg in Halle, Germany, and lead author of the paper. "Experiments at SLAC already demonstrated the ultimate speed limit of magnetic switching with this scheme. Here we show that tailored electron pulses can swiftly write, erase or switch topologically protected magnetic textures such as skyrmions."

So far, Schäffer says there are only a few realized applications of these skyrmions, which are relatively new to the forefront of solid state physics, but their properties and the current research capabilities make them ripe for next generation technologies.

"In the tradition of the field of spin dynamics in nanostructures, I still appreciate the idea of non-volatile (long-term) memory devices, as the community of spintronics is also pursuing," he said. "The nice interplay between the mathematical concept of topological energy barriers and the physical transport properties of skyrmions, which are highly mobile, are the outstanding aspects for me."

Not only are these magnetic excitations controllable, but the team's results confirm many of the dynamic understandings provided by theory. Moreover, their results demonstrate potential for achieving similar topological charge transcription by way of laser pulses, whose lower and mass-free energy offer a number of practical benefits.

"These quasiparticles are robust against external perturbations, and hence are usually difficult to manipulate, and have a high potential for applications in data storage and computing," Schäffer said. "I was positively surprised about the nice accordance between experiment, analytics and numerical results, which gave me a good feeling in continuing this path. A second point was the finding that textures can be written with much lower beam intensity using tightly focused electron pulses. This brings their technological exploitation within reach as the required high-energy ultrafast electron microscopy setup is currently being developed at SLAC and other places worldwide."

This significant step lends itself to many more in the evolution from this generation's cutting-edge research to next generation's hard drives. As they continue to build on their research, Schäffer and his collaborators are looking toward broader applicability in a number of ways.

"Further development in the setups is required to be able to write skyrmionic structures on extended films, where we can't make any profit of geometric confinements like in the nanodisks," Schäffer said. "The next steps are mani-fold. Of course, an experimental realization is what we strive for with our experimental colleagues, especially the question of how good the switching-behavior between different topological states can be covered by our calculations. A complete simulation of laser-irradiated TEM of magnetic samples is one of our big goals at the moments."

####

About American Institute of Physics
Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See http://apl.aip.org .

For more information, please click here

Contacts:
Julia Majors

301-209-3090

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, "Ultrafast imprinting of topologically protected magnetic textures via pulsed electrons," is authored by Alexander F. Schäffer, Hermann A. Durr and Jamal Berakdar. The article appeared in Applied Physics Letters July 18, 2017 (DOI: 10.1063/1.4991521). After that date, it can be accessed at:

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Magnetism/Magnons

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Skyrmions

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Memory Technology

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project