Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Smart materials used in ultrasound behave similar to water, Penn chemists report

Penn scientists explore the materials that make medical ultrasound and SONAR devices work better than ever. Their theory (left) provides unprecedented agreement with experimental X-ray diffuse scattering data (right), showing that their material model is revealing the behavior of relaxor ferroelectric materials.
Penn scientists explore the materials that make medical ultrasound and SONAR devices work better than ever. Their theory (left) provides unprecedented agreement with experimental X-ray diffuse scattering data (right), showing that their material model is revealing the behavior of relaxor ferroelectric materials.

Abstract:
A team of researchers at the University of Pennsylvania is gaining new insight into the smart materials used in ultrasound technology. While forming the most thorough model to date of how these materials work, they have found striking similarities with the behavior of water.

Smart materials used in ultrasound behave similar to water, Penn chemists report

Philadelphia, PA | Posted on June 16th, 2017

The research, published in Nature, was led by Andrew M. Rappe, the Blanchard Professor of Chemistry in the School of Arts & Sciences and a professor of materials science and engineering in the School of Engineering and Applied Science, and postdoc Hiroyuki Takenaka in the Department of Chemistry. Penn Research Specialist Ilya Grinberg and alumnus Shi Liu also contributed to the study.

The researchers in this group are interested in how materials interact with, harness and convert energy into different forms. In this study, they were investigating a behavior of smart material called piezoelectricity, which is the interchange of mechanical energy with electrical energy.

In piezoelectricity, applying an electric field to a material reorients dipoles within it; this is the key to the functionality of the material.

"You can imagine that there's a cage of oxygen atoms," Rappe said, "and there's a positive ion in the middle. If it sits in the middle of the cage then there's no dipole, but if it moves off-center then there's a dipole. The rearrangement of those dipoles is what leads to these smart material properties."

As the positive ions move off center, the cages of ions surrounding them either shrink or elongate in a concerted fashion, causing the material to change shape.

In ultrasound devices, providing voltage makes the material change shape, or vibrate, and those vibrations enter the human body and echo around. Piezoelectric materials are also used in sonar to allow instruments to see under water.

Recently, a set of materials was discovered that scientists believe gives higher piezoelectric performance than previous ones. But at a fundamental level, Rappe said, people didn't understand why these materials function as well as they do.

"If you don't know why it works, how could you possibly reverse engineer it and get to the next level?" he said.

Researchers often use theory and modeling to study smart materials. They have an idea of how they think a system works and can portray what an actual material is doing by solving some equations.

"One thing that we often do is solve the equations of quantum mechanics because quantum mechanics is known to be an accurate model for how electrons behave," Rappe said. "The electrons are the glue that holds the nuclei together. If you know how they're behaving, then you know what determines when bonds break and form and so forth."

But one exciting development, he said, is the ability to go beyond what researchers can afford quantum mechanically and build mechanical models to give them a more approximate way of dealing with the bonds in a solid while also allowing them to model finite temperature, larger amounts of material and for longer periods of time.

"This allows us to observe behaviors that take a long time to happen or only happen deep inside a material, and this gives us unique perspectives on complicated behaviors," Rappe said.

While other experiments have probed this material and some theoretical models have revealed certain aspects of it, the Penn researchers have now provided the most comprehensive model to date of how this material works.

Previously, scientists thought that at higher temperatures it's "every dipole for himself," making it easy for them to respond to external stimuli such as electric fields.

As the material cools down, the dipoles clump into groups called polar nanoregions. As these regions grow larger, they become sluggish and it becomes increasingly difficult for them to respond.

In this new paper, the researchers showed that, while at higher temperatures the dipoles are in fact floating free as the temperature cools and the dipoles find each other and form these polar nanoregions, the regions don't actually grow bigger but instead just become more thoroughly aligned.

This leads to the birth of domain walls within the material separating patches of different alignment. It's these domain walls between dipolar regions that lead to enhanced piezoelectric properties in the material.

This echoes a similar behavior in water, wherein the lower the temperature the more correlated the dipoles become, but the correlation doesn't hold at larger distances.

"They're never perfectly aligned," Rappe said. "Nearby water dipoles may get more and more aligned, but because of hydrogen bonding there's some intrinsic size beyond which it doesn't grow."

Piezoelectric materials are an important element in transducers, actuators and sensors used in many industries. Lack of understanding about how they work has slowed the improvement of higher quality materials. This paper provides a novel understanding of how they function and reveals similarities with the behavior of water.

A more complete understanding of why these materials behave the way they do can unlock new materials design, leading to higher quality piezoelectrics that may revolutionize smart material applications.

"It's exciting to be able to build up a model from individual electrons up to millions of atoms at finite temperature and observe complex properties," Rappe said, "and it's exciting that observing those complex properties gives us new productive directions where we can enhance materials that will more efficiently convert energy for useful devices to help people."

###

This research was supported by the Office of Naval Research under Grant N00014- 12-1-1033. Computational support was provided by the U.S. Department of Defense through a Challenge Grant from the High Performance Computing Modernization Office.

####

For more information, please click here

Contacts:
Ali Sundermier

215-898-8562

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Water

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project