Home > Press > Is this the 'holey' grail of batteries?
Abstract:
In a battery system, electrodes containing porous graphene scaffolding offer a substantial improvement in both the retention and transport of energy, a new study reveals.
Usually, techniques to improve the density of stored charge conflict with those that aim to improve the speed at which ions can move through a material. Nanostructured materials have shown extraordinary promise for electrochemical energy storage, but these materials are usually limited to laboratory cells with ultrathin electrodes and very low mass loadings. Hongtao Sun et al. overcome this obstacle by incorporating holey graphene into a niobium pentoxide electrode. The nanopores facilitate rapid ion transport. By "fine-tuning" the size of the nanopores, the researchers were able to achieve high mass loading and improved power capability, while still maintaining the higher charge transport. In a related Perspective, Hui-Ming Cheng and Feng Li write, "An unprecedented combination of high areal capacity and current density at practical mass loadings (10 to 20 mg cm-2) marks a critical step toward the use of high-performance electrode materials in commercial cells."
####
For more information, please click here
Contacts:
Science Press Package
202-326-6440
Copyright © American Association for the Advancement of Science (AAAS)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links | 
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Graphene/ Graphite
    Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
    Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Possible Futures
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Discoveries
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
    Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||