Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative

Rice University chemist Matteo Pasquali shows a spool of fiber made of carbon nanotubes. Rice has joined the Department of Energy's Next Generation Machines: Enabling Technologies initiative and will work to increase the conductivity of the fiber for use in electric motors. (Credit: Jeff Fitlow/Rice University)
Rice University chemist Matteo Pasquali shows a spool of fiber made of carbon nanotubes. Rice has joined the Department of Energy's Next Generation Machines: Enabling Technologies initiative and will work to increase the conductivity of the fiber for use in electric motors. (Credit: Jeff Fitlow/Rice University)

Abstract:
Rice University scientists who developed conductive fibers made entirely of carbon nanotubes will enhance their invention with the aid of a grant from the Department of Energy.

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative

Houston, TX | Posted on May 10th, 2017

The grant for $1 million is part of the agency's Next Generation Machines: Enabling Technologies initiative. It will help Rice Professor Matteo Pasquali and his colleagues improve on the nanotube fibers they introduced in 2013.

The grant is one of 13 awarded by the agency to improve the efficiency of electric motor components through the development of wide bandgap semiconductors, advanced magnetic materials, aggressive cooling techniques and improved conductors, especially for wind, solar, electric vehicle and battery applications.

The fibers boast high strength and conductivity and far better flexibility than metal wires. They have been investigated for use as conductive links in damaged hearts, as brain implants and for data and low-power applications. Because they are manufactured via a scalable wet-spinning process, Pasquali said they could be used in large-scale applications.

Pasquali, Rice Professor Junichiro Kono and colleagues at the University of Maryland and Dexmat, a Houston company founded by Rice alumni, will work to double the conductivity of their fiber for use in lightweight motors and generators. Meeting that goal will require a specific conductivity 33 percent better than aluminum at 150 degrees Celsius (302 degrees Fahrenheit), according to their proposal.

The researchers anticipate that will yield major savings on weight, and thus fuel economy, for cars and aerospace applications.

"Our carbon nanotube fiber technology is already at the leading edge for such new applications as medical electronics, wearables and electronic textiles," Pasquali said. "With conductivity improvements of 20 to 30 percent, we can greatly expand the application range to include metal wire replacement for mobile applications."

Pasquali is a professor of chemical and biomolecular engineering, of materials science and nanoengineering, and of chemistry and chair of Rice's Department of Chemistry. Kono is a professor of electrical and computer engineering, of physics and astronomy and of materials science and nanoengineering.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for happiest students and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to http://tinyurl.com/RiceUniversityoverview

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
Jeff Falk
713-348-6775


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

New nanotech fiber: Robust handling, shocking performance:

Complex Flows of Complex Fluids (Pasquali group):

Department of Energy announcement:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project