Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Tiny sensor lays groundwork for precision X-rays detection via endoscopy:Nanoscale fiber-integrated X-ray sensor opens new doors for medical imaging and radiotherapy

The illustration shows an optical antenna coupled to a cluster of scintillators at its end. The blue waves in the background represent the X-rays, the intense and bright green sphere corresponds to the scintillation cluster and the sparks within the antenna body symbolize the X-ray-excited photon emission from the scintillators being strongly directed toward a narrow single mode optical fiber.
CREDIT
Miguel Angel Suarez, FEMTO-ST Institute
The illustration shows an optical antenna coupled to a cluster of scintillators at its end. The blue waves in the background represent the X-rays, the intense and bright green sphere corresponds to the scintillation cluster and the sparks within the antenna body symbolize the X-ray-excited photon emission from the scintillators being strongly directed toward a narrow single mode optical fiber. CREDIT Miguel Angel Suarez, FEMTO-ST Institute

Abstract:
Using a tiny device known as an optical antenna, researchers have created an X-ray sensor that is integrated onto the end of an optical fiber just a few tens of microns in diameter. By detecting X-rays at an extremely small spatial scale, the sensor could be combined with X-ray delivering technologies to enable high-precision medical imaging and therapeutic applications.

Tiny sensor lays groundwork for precision X-rays detection via endoscopy:Nanoscale fiber-integrated X-ray sensor opens new doors for medical imaging and radiotherapy

Washington, DC | Posted on March 29th, 2017

"We want to develop this technology so that it could be used in radiotherapy, for example," said Thierry Grosjean, from FEMTO-ST Institute, The National Center for Scientific Research, France. "Specifically, the sensor could allow a real-time measurement of how much radiation is being delivered to a tumor via endoscopy."

In The Optical Society (OSA) journal Optics Letters, the researchers demonstrate their new X-ray sensor using low energy X-rays. They say that the same principle should work with the high-energy X-rays used for medical applications such as imaging and radiotherapy.

Controlling light

Like many of today's X-ray applications, the new sensor uses indirect detection. Rather than directly sensing X-rays, this method uses a special detector called a scintillator, which absorbs the X-rays and then emits light that is detected by an optical camera.

Achieving indirect X-ray detection on a small scale is challenging because scintillators emit photons in all directions. Scaling scintillators down to a very small size means that they will emit very few photons, making it almost impossible for the camera to catch enough photons at just the right angle. The researchers turned to optical antennas to help with this challenge.

Because optical antennas have been used to control the light emission from fluorescing molecules, the researchers thought they might also control light emitted by scintillators. "An optical antenna works much like a radio frequency antenna, offering a way to interconnect an emitter with free-space," said Grosjean. "We demonstrated that they can be used to control the directionality of the emission from scintillators."

Fabricating the sensor

To make the X-ray sensor, the researchers used an optical antenna to connect a single mode optical fiber with a tiny cluster of scintillators. They fabricated the optical antenna, just a few microns wide, onto the end of the fiber and grafted the scintillator cluster at its extremity. Light emitted from the scintillators hits the antenna and is directed into the fiber, where it travels to a remote optical detector. This setup keeps the electronics away from the X-rays, which protects electronics from damage after repeated use.

Although the X-ray sensor fabrication required a clean room facility, the researchers said it was not a difficult or expensive process. They are currently working on procedures that might make it even easier to graft the scintillators onto the fiber antenna.

From their experiments, the researchers estimated that the sensor has a spatial resolution on the order of 1 micron, which they are working to increase to about 100 nanometers. This improved resolution would allow the device to distinguish chemical components in composite materials by using the fiber tip to conduct low-energy X-ray scanning microscopy.

In addition to expanding the technology to work with the high-energy X-rays required for medical applications, the researchers are also investigating whether optical antennas could enable faster X-ray detectors. Since the devices have been shown to shorten the time between light absorption and light emission in fluorescence processes, the antennas might also shorten the time between X-ray absorption and light emission within scintillators - thus creating a faster way to detect X-rays.

####

About The Optical Society
Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org/100.



About Optics Letters

Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals and fiber optics.

For more information, please click here

Contacts:
Joshua Miller

202-416-1435

Rebecca B. Andersen
The Optical Society

+1 202.416.1443

Copyright © The Optical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper: Z. Xie, H. Maradj, M.-A. Suarez, L. Viau, V. Moutarlier, C. Filiatre, C. Fauquet, D. Tonneau, T. Grosjean, "Ultracompact X-ray dosimeter based on scintillators coupled to a nano-optical antenna," Opt. Lett., Volume 42, Issue 7, 1361-1364 (2017).

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Sensors

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Tools

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project