Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New optical nanosensor improves brain mapping accuracy, opens way for more applications: Potassium-sensitive fluorescence-imaging method shines light on chemical activity within the brain

A new optical nanosensor enables more accurate brain mapping and opens the way for broader applications in future; Fig. 5 in a paper reporting on the work shows retention of a potassium nanosensor in the extracellular space. doi:10.1117/1.NPh.4.1.015002
CREDIT
The authors
A new optical nanosensor enables more accurate brain mapping and opens the way for broader applications in future; Fig. 5 in a paper reporting on the work shows retention of a potassium nanosensor in the extracellular space. doi:10.1117/1.NPh.4.1.015002 CREDIT The authors

Abstract:
A new optical nanosensor enabling more accurate measurement and spatiotemporal mapping of the brain also shows the way forward for design of future multimodal sensors and a broader range of applications, say researchers in an article published in the current issue of Neurophotonics. The journal is published by SPIE, the international society for optics and photonics.

New optical nanosensor improves brain mapping accuracy, opens way for more applications: Potassium-sensitive fluorescence-imaging method shines light on chemical activity within the brain

Bellingham, WA and Cardiff, UK | Posted on March 3rd, 2017

Neuronal activity results in the release of ionized potassium into extracellular space. Under active physiological and pathological conditions, elevated levels of potassium need to be quickly regulated to enable subsequent activity. This involves diffusion of potassium across extracellular space as well as re-uptake by neurons and astrocytes.

Measuring levels of potassium released during neural activity has involved potassium-sensitive microelectrodes, and to date has provided only single-point measurement and undefined spatial resolution in the extracellular space.

With a fluorescence-imaging-based ionized-potassium-sensitive nanosensor design, a research team from the University of Lausanne was able to overcome challenges such as sensitivity to small movements or drift and diffusion of dyes within the studied region, improving accuracy and enabling access to previously inaccessible areas of the brain.

The work by Joel Wellbourne-Wood, Theresa Rimmele, and Jean-Yves Chatton is reported in "Imaging extracellular potassium dynamics in brain tissue using a potassium-sensitive nanosensor." The article is freely available for download.

"This is a technological breakthrough that promises to shed new light -- both literally and figuratively -- on understanding brain homeostasis," said Neurophotonics associate editor George Augustine, of Duke University. "It not only is much less invasive than previous methods, but it adds a crucial spatial dimension to studies of the role of potassium ions in brain function."

This potassium-sensitive nanosensor is likely to aid future investigations of chemical mechanisms and their interactions within the brain, the authors note. The spatiotemporal imaging created by collected data will also allow for investigation into the possible existence of potassium micro-domains around activated neurons and the spatial extent of these domains. The study confirms the practicality of the nanosensor for imaging in the extracellular space, and also highlights the range of possible extensions and applications of the nanosensor strategy.

###

David Boas of Massachusetts General Hospital, Harvard Medical School, is the editor-in-chief of Neurophotonics. Launched in 2014, Neurophotonics is published digitally in the SPIE Digital Library and in print. The journal covers advances in optical technology applicable to the study of the brain and their impact on basic and clinical neuroscience applications.

The SPIE Digital Library contains more than 458,000 articles from SPIE journals, proceedings, and books, with approximately 18,000 new research papers added each year. Abstracts are freely searchable, and a number of journal articles are published with open access.

####

About SPIE - InternationalSociety for Optics and Photonics
SPIE, the international society for optics and photonics, is an educational not-for-profit organization founded in 1955 to advance light-based science, engineering and technology. The Society serves nearly 264,000 constituents from approximately 166 countries, offering conferences and their published proceedings, continuing education, books, journals, and the SPIE Digital Library. In 2016, SPIE provided $4 million in support of education and outreach programs.

For more information, please click here

Contacts:
Amy Nelson

360-685-5478

Copyright © SPIE - InternationalSociety for Optics and Photonics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project