Home > Press > NUS engineers develop low-cost, flexible terahertz radiation source for fast, non-invasive screening: Novel invention presents promising applications in spectroscopy, safety surveillance, cancer diagnosis, imaging and communication
This is the team's low-cost THz radiation sources, which can be powered by a low-power laser, present promising applications in spectroscopy, safety surveillance, cancer diagnosis, imaging and communication. CREDIT National University of Singapore |
Abstract:
Portable handheld sensors for detecting explosives, wearable sensors that can detect chemical agents, compact devices for fast and accurate identification of defects in computing chips as well as advanced, non-invasive imaging techniques that could detect tiny tumours could become a reality sooner than expected as researchers around the world are actively studying novel ways to exploit terahertz (THz) technology. Giving a big boost to this global research effort is a major technological breakthrough in terahertz technology achieved by researchers from the National University of Singapore (NUS).
Led by Associate Professor Yang Hyunsoo and Dr Wu Yang from the Department of Electrical and Computer Engineering at the NUS Faculty of Engineering and NUS Nanoscience and Nanotechnology Institute, the research team has successfully developed high performance and low-power driven THz emitters that could be mass-produced at low cost, addressing a critical challenge for industrial application of THz technology. These THz emitters, which are used for the generation of THz waves, can also function on flexible surfaces without compromising on performance.
The research team published the findings of their study in the scientific journal Advanced Materials on 25 January 2017. This invention was achieved in collaboration with researchers from the Institute of Materials Research and Engineering under Singapore's Agency for Science, Technology and Research, as well as Tongji University in China.
"Our invention is a big step forward in THz technology and we believe that this will greatly accelerate its application in various fields. For instance, in the area of safety surveillance, our invention can contribute towards miniaturisation of bulky THz systems to be used in the detection of dangerous chemicals and explosives for protection against hostile threats. Affordable and high performance THz screening devices could also improve disease diagnosis and benefit patients. Furthermore, fabricating our device on a flexible surface also opens up many exciting possibilities for it to be incorporated into wearable devices," explained Assoc Prof Yang.
Making waves in terahertz
THz waves have attracted a lot of attention in the past two decades as they have promising applications in a wide range of areas from medicine, surveillance to computing and communication. THz waves, which have wavelengths ranging from tens of microns to a few millimetres, occupy the space between microwaves and infrared light waves in the electromagnetic spectrum.
Being non-ionising as well as non-destructive, THz waves can pass through non-conducting materials such as clothes, paper, wood and brick, making them ideal for applications in areas such as cancer diagnosis, detection of chemicals, drugs and explosives, coating analysis and quality control of integrated circuit chips. However, current THz sources are large, multi-component systems that are heavy and expensive. Such systems are also hard to transport, operate, and maintain.
Hence, the flexible, low-cost THz radiation sources developed by the research team potentially paves the way for greater adoption of THz technology and contribute towards the commercialisation of a wide range of THz applications.
Low-cost, flexible and low-power driven THz emitters
"Traditional methods of generating THz waves, such as through the exciting of electro-optical crystals or photoconductive antennas, often require expensive and bulky high power lasers or extremely expensive and sophisticated device fabrication processes. Our team's THz emitters have displayed better performance compared to existing devices in many aspects. At the same time, we have also developed a fabrication process to produce these novel THz emitters in large quantities at a low cost," said Dr Wu, who is the first author of the study.
Developed using metallic thin film heterostructures that are 12-nanometre in thickness, the novel radiation sources emit broadband THz waves with a higher power output than a standard 500-micrometre thick rigid electro-optical crystal emitter. In addition, the novel emitters can be powered by a low-power laser, hence lowering the operating cost substantially.
The research team also devised a novel, low-cost fabrication technique to produce the emitters. A large wafer-scale film can be deposited and subsequently diced to a large quantity of ready-to-use devices, thus making this production method commercially scalable. The research team also tested their device on flexible surfaces and found that its performance was not compromised despite being subjected to a large bending curvature.
Moving forward, the team plans to build a compact spectroscopy system using THz technology based on its advanced THz emitters. The researchers are also looking into enhancing THz emission for specific wavelengths, which will be beneficial for a wide range of THz-related studies and applications. The research team has filed a patent for the invention and hopes to work with industry partners to further explore various applications of this novel technology.
####
For more information, please click here
Contacts:
Goh Yu Chong
65-660-11653
Copyright © National University of Singapore
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Imaging
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Cancer
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
Law enforcement/Anti-Counterfeiting/Security/Loss prevention
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||