Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The Department of Earth Sciences at Royal Holloway, University of London uses a cathodoluminescence detector from Deben to study geological specimens from SE Asia

A selection of CL images of zircons showing oscillatory zoning, complex internal structures and core/rim relationships. (Images courtesy of Juliane Hennig & Tim Breitfeld, RHUL).
A selection of CL images of zircons showing oscillatory zoning, complex internal structures and core/rim relationships. (Images courtesy of Juliane Hennig & Tim Breitfeld, RHUL).

Abstract:
Deben, a leading provider of in-situ testing stages together with innovative accessories and components for electron microscopy, reports on the use of a cathodoluminescence detector to understand structure of geological specimens collected in South East Asia by the research team of Professor Robert Hall of Royal Holloway University of London.

The Department of Earth Sciences at Royal Holloway, University of London uses a cathodoluminescence detector from Deben to study geological specimens from SE Asia

Woolpit, UK | Posted on January 31st, 2017

Professor Robert Hall leads field based research into the geology of South East Asia and the western Pacific. Samples of sedimentary rocks are brought back to the UK where they are analysed by heavy and light mineral analyses as well as uranium-lead (U-Pb) zircon geochronology for provenance studies and pathway reconstruction. Furthermore, magmatic and metamorphic basement rocks are dated to identify potential sources for provenance studies and to improve the understanding of the tectonic processes in the region. The results are also incorporated in paleogeographic reconstructions of SE Asia.

Team member, post-doctoral researcher Juliane Hennig, takes up the story. “A main aspect of our research involves heavy mineral separation using heavy liquids (LST, DIM) or a Wilfley table, as well as a Frantz Isodynamic separator. This includes extraction of zircons which are analysed by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) U-Pb geochronology for age determination. Cathodoluminescence (CL) imaging is an important tool for us to evaluate the internal zircon structure prior to U-Pb analysis. It is used to select laser spot positions and allows us to specifically target an area of interest in the zircon. It can also help to detect possible inclusions or cracks. The CL images can reveal core and rim relationships indicating different growth episodes of the zircons which, in combination with age dating, can provide further insights into the history of the rock. It can also be used to support possible interpretations of the age results, such as oscillatory zoning which indicates a magmatic origin, or irregular convolute structures of zircons or rims which may suggest a metamorphic origin.” Furthermore team member Dr Amy Gough uses the CL detector for imaging of quartz. “Differentiation of volcanic and hydrothermal quartz aids the light mineral analysis for sedimentary provenance. It also allows us to determine which grains are detrital and have authigenic overgrowths. The CL detector can also help to unravel the history of the detrital quartz grains through highlighting both growth zoning and different generations of growth.”

Commenting on the choice of detector, Dr Hennig said “The group chose the Centaurus CL detector from Deben based on previous experiences at Birkbeck College/UCL. It has provided very good results and high quality images from the scanning electron microscope (SEM).” Examples of the work are shown below. For further information, readers are recommend to look at recent publications1,2 noted in the reference section below.

The Deben Centaurus is capable of producing high resolution cathodoluminescent (CL) images of luminescent materials. Using a user exchangeable diamond turned reflector tip, monochrome CL images can be easily collected and fed back into the SEM auxiliary video input. The photomultiplier may also be exchanged to select a particular wavelength range with sensitivity available from UV to deep IR at 185 nm to 1200 nm. For more details of how Deben helps customers to solve experimental challenges, develop a special configuration or to obtain more information on Deben’s applications and product portfolio, please visit www.deben.co.uk

References

1 Webb, M., White, L.T., 2016. Age and nature of Triassic magmatism in the Netoni Intrusive Complex, West Papua, Indonesia. Journal of Asian Earth Sciences, 132, 58-74.(CL images are included in the supplementary files).

2 Hennig, J., Breitfeld, H.T., Hall, R., Nugraha, A.M.S., (in prep.). The Mesozoic tectonomagmatic evolution at the Paleo-Pacific subduction in West Borneo. (currently in review)

####

About Deben
Deben are a UK precision engineering company specialising in the field of in-situ tensile testing, motion control and specimen cooling for microscopy applications. Established in 1986 and named after a Suffolk river, Deben now operate from a large, modern business unit in Woolpit near Bury St. Edmunds in Suffolk. The product groups are motor control systems, in-situ micro-tensile stages, Peltier heating & cooling stages, detectors for SEMs and electro-static beam blankers. The company also makes custom and OEM versions of these products to specifically meet customer requirements.

Deben provide consultancy, design and prototype manufacturing services. In house facilities include SolidWorks and SolidEdge 3D CAD and COSMOS finite element analysis software, CNC machining, electronics design and manufacture and software design using Visual C++, Microsoft.net and DirectX. Utilising these resources and experience, Deben manufacture products for OEMs and end users in the UK and overseas.

Deben UK Ltd. is a subsidiary company of UK based Judges Scientific plc. For details on Deben and all its products & solutions, visit www.deben.co.uk.

For more information, please click here

Contacts:
Deben UK Limited
Brickfields Business Park
Old Stowmarket Road
Woolpit, Bury St Edmunds
Suffolk IP30 9QS, UK
T +44 (0)1359 244870
www.deben.co.uk


Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA
T +44(0)1799 521881
M +44(0)7843 012997
www.talking-science.com

Copyright © Deben

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project