Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications

A miniature electron gun driven by Terahertz radiation: An ultraviolett pulse (blue) back-illuminates the gun photocathode, producing a high density electron bunch inside the gun. The bunch is immediately accelerated by ultra-intense single cycle Terahertz pulses to energies approaching one kilo-electronvolt (keV). These high-field optically-driven electron guns can be utilized for ultrafast electron diffraction or injected into the accelerators for X-ray light sources.
CREDIT
Credit: W. Ronny Huang, CFEL/DESY/MIT
A miniature electron gun driven by Terahertz radiation: An ultraviolett pulse (blue) back-illuminates the gun photocathode, producing a high density electron bunch inside the gun. The bunch is immediately accelerated by ultra-intense single cycle Terahertz pulses to energies approaching one kilo-electronvolt (keV). These high-field optically-driven electron guns can be utilized for ultrafast electron diffraction or injected into the accelerators for X-ray light sources. CREDIT Credit: W. Ronny Huang, CFEL/DESY/MIT

Abstract:
In a multi-national effort, an interdisciplinary team of researchers from DESY and the Massachusetts Institute of Technology (MIT) has built a new kind of electron gun that is just about the size of a matchbox. Electron guns are used in science to generate high-quality beams of electrons for the investigation of various materials, from biomolecules to superconductors. They are also the electron source for linear particle accelerators driving X-ray free-electron lasers. The team of DESY scientist Franz Kärtner, who is also a professor at University of Hamburg and continues to run a research group at MIT, where he taught till 2010 before coming to Hamburg, presents its new electron gun in the scientific journal Optica.

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications

Hamburg, Germany | Posted on November 25th, 2016

The new device uses laser generated terahertz radiation instead of the usual radio-frequency fields to accelerate electrons from rest. As the wavelength of the terahertz radiation is much shorter than radio-frequency radiation, the device can shrink substantially. While state-of-the-art electron guns can have the size of a car, the new device measures just 34 by 24.5 by 16.8 millimetres.

"Electron guns driven by terahertz radiation are miniature and efficient," explains main author Dr. W. Ronny Huang from MIT, who carried out this work at the Center for Free-Electron Laser Science CFEL in Hamburg, a cooperation of DESY, the University of Hamburg and the German Max Planck Society. "Also, the materials used to guide the radiation are susceptible to much higher fields at terahertz wavelengths as compared to radio frequency wavelengths, allowing terahertz radiation to give a much stronger 'kick' to the electrons. This has the effect of making the electron beams much brighter and shorter." Ultrashort electron beams with narrow energy spread, high charge and low jitter are essential for ultrafast electron diffraction experiments to resolve phase transitions in metals, semiconductors and molecular crystals, for example.

"Our device has a nanometer thin film of copper which, when illuminated with ultraviolett light from the back, produces short bursts of electrons," describes Huang. "Laser radiation with Terahertz frequency is fed into the device which has a microstructure specifically tailored to channel the radiation to maximize its impact on the electrons." This way the device reached an accelerating power of 350 Megavolts per metre. "The accelerating field was almost twice that of current state-of-the-art guns," says Huang. "We achieved an acceleration of a dense packet of 250,000 electrons from rest to 0.5 kilo-elecronvolts (keV) with minimal energy spread. Because of this, the electron beams coming out of the device could already be used for low-energy electron diffraction experiments."

In their set-up, the researchers used the large CFEL laser lab. The ultraviolet flash used to eject the electrons from the copper film is generated from the same laser as the accelerating terahertz radiation. "This ensures absolute timing synchronisation, substantially reducing jitter," explains Huang. The device worked stably over at least one billion shots, easing every-day operation.

"Electron guns are used ubiquitously for making atomic-resolution movies of chemical reactions via ultrafast electron diffraction as pioneered in Prof. Dwayne Miller's group at the Max Planck Institute for the Structure and Dynamics of Matter and CFEL," says Kärtner. "With smaller and better electron guns, biologists can gain better insight to the intricate workings of macromolecular machines, including those responsible for photosynthesis. And physicists can better understand the fundamental interaction processes in complex materials."

"Furthermore, electron guns are an important component of X-ray light source facilities," explains Kärtner. Next generation terahertz electron guns producing ultrashort and ultrabright electron bunches up to relativistic energies and of ten femtoseconds (quadrillionth of a second) duration are currently in development at CFEL, according to Kärtner. "These devices will be used as photo injectors for attosecond table-top free-electron lasers to be constructed within the program AXSIS," says Kärtner. An attosecond is a thousandth of a femtosecond. AXSIS (frontiers of Attosecond X-ray Science-Imaging and Spectroscopy) , funded by the European Research Council through an ERC Synergy Grant which also funded this work, also involves DESY scientists Prof. Henry Chapman and Dr. Ralph Aßman and Arizona State University Professor Petra Fromme.

####

About Deutsches Elektronen-Synchrotron DESY
Deutsches Elektronen-Synchrotron DESY is the leading German accelerator centre and one of the leading in the world. DESY is a member of the Helmholtz Association and receives its funding from the German Federal Ministry of Education and Research (BMBF) (90 per cent) and the German federal states of Hamburg and Brandenburg (10 per cent). At its locations in Hamburg and Zeuthen near Berlin, DESY develops, builds and operates large particle accelerators, and uses them to investigate the structure of matter. DESY's combination of photon science and particle physics is unique in Europe.

For more information, please click here

Contacts:
Dr. Thomas Zoufal

49-408-998-1666

Copyright © Deutsches Elektronen-Synchrotron DESY

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference

Related News Press

Chemistry

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

UC Irvine scientists create material that can take the temperature of nanoscale objects: The technology can track small temp changes in electronic devices, biological cells August 16th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Superconductivity

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project