Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists set traps for atoms with single-particle precision: Technique may enable large-scale atom arrays for quantum computing

This image shows the basic setup that enables researchers to use lasers as optical “tweezers” to pick individual atoms out from a cloud and hold them in place. The atoms are imaged onto a camera, and the traps are generated by a laser that is split into many different focused laser beams. This allows a single atom to be trapped at each focus.

Courtesy of the researchers
This image shows the basic setup that enables researchers to use lasers as optical “tweezers” to pick individual atoms out from a cloud and hold them in place. The atoms are imaged onto a camera, and the traps are generated by a laser that is split into many different focused laser beams. This allows a single atom to be trapped at each focus. Courtesy of the researchers

Abstract:
Atoms, photons, and other quantum particles are often capricious and finicky by nature; very rarely at a standstill, they often collide with others of their kind. But if such particles can be individually corralled and controlled in large numbers, they may be harnessed as quantum bits, or qubits -- tiny units of information whose state or orientation can be used to carry out calculations at rates significantly faster than today's semiconductor-based computer chips.

Scientists set traps for atoms with single-particle precision: Technique may enable large-scale atom arrays for quantum computing

Cambridge, MA | Posted on November 7th, 2016

In recent years, scientists have come up with ways to isolate and manipulate individual quantum particles. But such techniques have been difficult to scale up, and the lack of a reliable way to manipulate large numbers of atoms remains a significant roadblock toward quantum computing.

Now, scientists from Harvard and MIT have found a way around this challenge. In a paper published today in the journal Science, the researchers report on a new method that enables them to use lasers as optical "tweezers" to pick individual atoms out from a cloud and hold them in place. As the atoms are "trapped," the scientists use a camera to create images of the atoms and their locations. Based on these images, they then manipulate the angle of the laser beams, to move individual atoms into any number of different configurations.

The team has so far created arrays of 50 atoms and manipulated them into various defect-free patterns, with single-atom control. Vladan Vuletic, one of the paper's authors and the Lester Wolfe Professor of Physics at MIT, likens the process to "building a small crystal of atoms, from the bottom, up."

"We have demonstrated a reconfigurable array of traps for single atoms, where we can prepare up to 50 individual atoms in separate traps deterministically, for future use in quantum information processing, quantum simulations, or precision measurements," says Vuletic, who is also a member of MIT's Research Laboratory of Electronics. "It's like Legos of atoms that you build up, and you can decide where you want each block to be."

The paper's other senior authors are lead author Manuel Endres and Markus Greiner and Mikhail Lukin of Harvard University.

Staying neutral

The team designed its technique to manipulate neutral atoms, which carry no electrical charge. Most other quantum experiments have involved charged atoms, or ions, as their charge makes them more easily trappable. Scientists have also shown that ions, under certain conditions, can be made to perform quantum gates -- logical operations between two quantum bits, similar to logic gates in classical circuits. However, because of their charged nature, ions repel each other and are difficult to assemble in dense arrays.

Neutral atoms, on the other hand, have no problem being in close proximity. The main obstacle to using neutral atoms as qubits has been that, unlike ions, they experience very weak forces and are not easily held in place.

"The trick is to trap them, and in particular, to trap many of them," Vuletic says. "People have been able to trap many neutral atoms, but not in a way that you could form a regular structure with them. And for quantum computing, you need to be able to move specific atoms to specific locations, with individual control."

Setting the trap

To trap individual neutral atoms, the researchers first used a laser to cool a cloud of rubidium atoms to ultracold, near-absolute-zero temperatures, slowing the atoms down from their usual, high-speed trajectories. They then directed a second laser beam through an instrument that splits the laser beam into many smaller beams, the number and angle of which depend on the radio frequency applied to the deflector.

The researchers focused the smaller laser beams through the cloud of ultracold atoms and found that each beam's focus -- the point at which the beam's intensity was highest -- attracted a single atom, essentially picking it out from the cloud and holding it in place.

"It's similar to charging up a comb by rubbing it against something woolen, and using it to pick up small pieces of paper," Vuletic says. "It's a similar process with atoms, which are attracted to regions of high intensity of the light field."

While the atoms are trapped, they emit light, which the scientists captured using a charge-coupled-device camera. By looking at their images, the researchers were able to discern which laser beams, or tweezers, were holding atoms and which were not. They could then change the radio frequency of each beam to "switch off" the tweezers without atoms, and rearrange those with atoms, to create arrays that were free of defects. The team ultimately created arrays of 50 atoms that were held in place for up to several seconds.

"The question is always, how many quantum operations can you perform in this time?" Vuletic says. "The typical timescale for neutral atoms is about 10 microseconds, so you could do about 100,000 operations in a second. We think for now this lifetime is fine."

Now, the team is investigating whether they can encourage neutral atoms to perform quantum gates -- the most basic processing of information between two qubits. While others have demonstrated this between two neutral atoms, they have not been able to retain quantum gates in systems involving large numbers of atoms. If Vuletic and his colleagues can successfully induce quantum gates in their systems of 50 atoms or more, they will have taken a significant step toward realizing quantum computing.

"People would also like to do other experiments aside from quantum computing, such as simulating condensed matter physics, with a predetermined number of atoms, and now with this technique it should be possible," Vuletic says. "It's very exciting."

###

This research was supported in part by the National Science Foundation and the National Security Science and Engineering Faculty Fellowship.

####

For more information, please click here

Contacts:
Abby Abazorius

617-253-2709

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper: "Atom-by-atom assembly of defect-free one-dimensional cold atom arrays.":

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

UC Irvine scientists create material that can take the temperature of nanoscale objects: The technology can track small temp changes in electronic devices, biological cells August 16th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Quantum Computing

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Optical computing/Photonic computing

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

Quantum nanoscience

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project