Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > When it comes to atomic-scale manufacturing, less really is more: Electrical currents can be now be switched on and off at the smallest conceivable scale enabling a new generation of 'green electronics' with the potential for great impact on the digital economy

Robert Wolkow, University of Alberta physics professor and the Principal Research Officer at Canada's National Institute for Nanotechnology, has developed a technique to switch a single-atom channel.
CREDIT
John Ulan
Robert Wolkow, University of Alberta physics professor and the Principal Research Officer at Canada's National Institute for Nanotechnology, has developed a technique to switch a single-atom channel. CREDIT John Ulan

Abstract:
Robert Wolkow is no stranger to mastering the ultra-small and the ultra-fast. A pioneer in atomic-scale science with a Guinness World Record to boot (for a needle with a single atom at the point), Wolkow's team, together with collaborators at the Max Plank Institute in Hamburg, have just released findings that detail how to create atomic switches for electricity, many times smaller than what is currently used.

When it comes to atomic-scale manufacturing, less really is more: Electrical currents can be now be switched on and off at the smallest conceivable scale enabling a new generation of 'green electronics' with the potential for great impact on the digital economy

Edmonton, Canada | Posted on October 29th, 2016

What does it all mean? With applications for practical systems like silicon semi-conductor electronics, it means smaller, more efficient, more energy-conserving computers, as just one example of the technology revolution that is unfolding right before our very eyes (if you can squint that hard).

"This is the first time anyone's seen a switching of a single-atom channel," explains Wolkow, a physics professor at the University of Alberta and the Principal Research Officer at Canada's National Institute for Nanotechnology. "You've heard of a transistor--a switch for electricity--well, our switches are almost a hundred times smaller than the smallest on the market today."

Today's tiniest transistors operate at the 14 nanometer level, which still represents thousands of atoms. Wolkow's and his team at the University of Alberta, NINT, and his spinoff QSi, have worked the technology down to just a few atoms. Since computers are simply a composition of many on/off switches, the findings point the way not only to ultra-efficient general purpose computing but also to a new path to quantum computing.

"We're using this technology to make ultra-green, energy-conserving general purpose computers but also to further the development of quantum computers. We are building the most energy conserving electronics ever, consuming about a thousand times less power than today's electronics."

While the new tech is small, the potential societal, economic, and environmental impact of Wolkow's discovery is very large. Today, our electronics consume several percent of the world's electricity. As the size of the energy footprint of the digital economy increases, material and energy conservation is becoming increasingly important.

Wolkow says there are surprising benefits to being smaller, both for normal computers, and, for quantum computers too. "Quantum systems are characterized by their delicate hold on information. They're ever so easily perturbed. Interestingly though, the smaller the system gets, the fewer upsets." Therefore, Wolkow explains, you can create a system that is simultaneously amazingly small, using less material and churning through less energy, while holding onto information just right.

When the new technology is fully developed, it will lead to not only a smaller energy footprint but also more affordable systems for consumers. "It's kind of amazing when everything comes together," says Wolkow.

Wolkow is one of the few people in the world talking about atom-scale manufacturing and believes we are witnessing the beginning of the revolution to come. He and his team have been working with large-scale industry leader Lockheed Martin as the entry point to the market.

"It's something you don't even hear about yet, but atom-scale manufacturing is going to be world-changing. People think it's not quite doable but, but we're already making things out of atoms routinely. We aren't doing it just because. We are doing it because the things we can make have ever more desirable properties. They're not just smaller. They're different and better. This is just the beginning of what will be at least a century of developments in atom-scale manufacturing, and it will be transformational."

####

For more information, please click here

Contacts:
Jennifer Pascoe

780-492-8813

Copyright © University of Alberta

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

"Time Resolved Single Dopant Charge Dynamics in Silicon" appeared in the October 26 edition of Nature Communications, an open-access journal in the group of Nature, world-leading scientific publications.:

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Molecular Nanotechnology

Quantum pumping in molecular junctions August 16th, 2024

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Research partnerships

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project