Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoantenna lighting-rod effect produces fast optical switches

This is Professor Otto Muskens.
CREDIT
University of Southampton
This is Professor Otto Muskens. CREDIT University of Southampton

Abstract:
A team of scientists, led by the University of Southampton, have produced a fast nanoscale optical transistor using gold nanoantenna assisted phase transition.

Nanoantenna lighting-rod effect produces fast optical switches

Southampton, UK | Posted on October 24th, 2016

The work, published in the journal Light, Science and Applications, opens up new directions in antenna-assisted switches and optical memory.

Small nanostructures that can interact strongly with light are of interest for a range of emerging new applications including small optical circuits and metasurface flat optics. Nanoantennas are designed to have strong optical resonances where energy is concentrated far below the diffraction limit, the smallest scale possible using conventional optics. Such extreme concentration of light can be used to enhance all kinds of effects related to localised energy conversion and harvesting, coupling of light to small molecules and quantum dots, and generating new frequencies of light through nonlinear optics.

Next to precise tuning of these antennas by design, an ability to actively tune their properties is of great interest.

Lead author Professor Otto Muskens, from the University of Southampton, said: "If we are able to actively tune a nanoantenna using an electrical or optical signal, we could achieve transistor-type switches for light with nanometer-scale footprint for datacommunication. Such active devices could also be used to tune the antenna's light-concentration effects leading to new applications in switchable and tuneable antenna-assisted processes."

The Southampton team used the properties of the antenna itself to achieve low energy optical switching of a phase-change material. The material used to achieve this effect was vanadium dioxide.

Vanadium dioxide is a special material with properties that can be switched from an insulator to a metal by increasing the temperature above the phase transition point (68 °C). Fabrication of this material is challenging and was produced by a team at the University of Salford, who specialise in thin-film deposition and who were able to grow very high quality films of this material.

Gold nanoantennas were fabricated on top of this thin film and were used to locally drive the phase transition of the vanadium dioxide.

Professor Muskens explained: "The nanoantenna assists the phase transition of the vanadium dioxide by locally concentrating energy near the tips of the antenna. It is like a lightning-rod effect. These positions are also where the antenna resonances are the most sensitive to local perturbations. Antenna-assisted switching thus results a large effect while requiring only a small amount of energy."

The theoretical modelling was done by a team from the University of the Basque Country in San Sebastian, Spain. Their detailed calculations revealed that the nanoantennas provided a new pathway by local absorption around the antenna. The antenna-assisted mechanism resulted in a much lower switching energy compared to just the VO2 film, corresponding to picojoule energies and a calculated efficiency of over 40 per cent.

####

For more information, please click here

Contacts:
Glenn Harris

44-023-805-93212

Copyright © University of Southampton

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Optical computing/Photonic computing

Programmable electron-induced color router array May 14th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Photonics/Optics/Lasers

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Programmable electron-induced color router array May 14th, 2025

Research partnerships

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project