Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Move over, solar: The next big renewable energy source could be at our feet

Associate Professor Xudong Wang holds a prototype of the researchers' energy harvesting technology, which uses wood pulp and harnesses nanofibers. The technology could be incorporated into flooring and convert footsteps on the flooring into usable electricity.
CREDIT
Stephanie Precourt/UW-Madison
Associate Professor Xudong Wang holds a prototype of the researchers' energy harvesting technology, which uses wood pulp and harnesses nanofibers. The technology could be incorporated into flooring and convert footsteps on the flooring into usable electricity. CREDIT Stephanie Precourt/UW-Madison

Abstract:
Flooring can be made from any number of sustainable materials, making it, generally, an eco-friendly feature in homes and businesses alike.

Move over, solar: The next big renewable energy source could be at our feet

Madison, WI | Posted on October 20th, 2016

Now, however, flooring could be even more "green," thanks to an inexpensive, simple method developed by University of Wisconsin-Madison materials engineers that allows them to convert footsteps into usable electricity.

Xudong Wang, an associate professor of materials science and engineering at UW-Madison, his graduate student Chunhua Yao, and their collaborators published details of the advance Sept. 24 in the journal Nano Energy.

The method puts to good use a common waste material: wood pulp. The pulp, which is already a common component of flooring, is partly made of cellulose nanofibers. They're tiny fibers that, when chemically treated, produce an electrical charge when they come into contact with untreated nanofibers.

When the nanofibers are embedded within flooring, they're able to produce electricity that can be harnessed to power lights or charge batteries. And because wood pulp is a cheap, abundant and renewable waste product of several industries, flooring that incorporates the new technology could be as affordable as conventional materials.

While there are existing similar materials for harnessing footstep energy, they're costly, nonrecyclable, and impractical at a large scale.

Wang's research centers around using vibration to generate electricity. For years, he has been testing different materials in an effort to maximize the merits of a technology called a triboelectric nanogenerator (TENG). Triboelectricity is the same phenomenon that produces static electricity on clothing. Chemically treated cellulose nanofibers are a simple, low-cost and effective alternative for harnessing this broadly existing mechanical energy source, Wang says.

The UW-Madison team's advance is the latest in a green energy research field called "roadside energy harvesting" that could, in some settings, rival solar power -- and it doesn't depend on fair weather. Researchers like Wang who study roadside energy harvesting methods see the ground as holding great renewable energy potential well beyond its limited fossil fuel reserves.

"Roadside energy harvesting requires thinking about the places where there is abundant energy we could be harvesting," Wang says. "We've been working a lot on harvesting energy from human activities. One way is to build something to put on people, and another way is to build something that has constant access to people. The ground is the most-used place."

Heavy traffic floors in hallways and places like stadiums and malls that incorporate the technology could produce significant amounts of energy, Wang says. Each functional portion inside such flooring has two differently charged materials -- including the cellulose nanofibers, and would be a millimeter or less thick. The floor could include several layers of the functional unit for higher energy output.

"So once we put these two materials together, electrons move from one to another based on their different electron affinity," Wang says.

The electron transfer creates a charge imbalance that naturally wants to right itself but as the electrons return, they pass through an external circuit. The energy that process creates is the end result of TENGs.

Wang says the TENG technology could be easily incorporated into all kinds of flooring once it's ready for the market. Wang is now optimizing the technology, and he hopes to build an educational prototype in a high-profile spot on the UW-Madison campus where he can demonstrate the concept. He already knows it would be cheap and durable.

"Our initial test in our lab shows that it works for millions of cycles without any problem," Wang says. "We haven't converted those numbers into year of life for a floor yet, but I think with appropriate design it can definitely outlast the floor itself."

The Wisconsin Alumni Research Foundation holds the patent to the technology. Other authors on the paper include Zhiyong Cai of the Forest Products Laboratory and UW-Madison graduate students Alberto Hernandez and Yanhao Yu. The Forest Products Laboratory and National Science Foundation provided funding for the research.

####

For more information, please click here

Contacts:
Xudong Wang

608-890-2667

Will Cushman

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

A link to the paper can be found at:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project