Home > Press > Working under pressure: Diamond micro-anvils with huge pressures will create new materials
![]() |
This is Yogesh Vohra. CREDIT UAB |
Abstract:
University of Alabama at Birmingham researchers will use pressures greater than those found at the center of the Earth to potentially create as yet unknown new materials. In the natural world, such immense forces deep underground can turn carbon into diamonds, or volcanic ash into slate.
The ability to produce these pressures depends on tiny nanocrystalline-diamond anvils built in a UAB clean room manufacturing facility. Each anvil head is just half the width of an average human hair. The limits of their pressure have not yet been reached as the first 27 prototypes are being tested.
"We have achieved 75 percent of the pressure found at the center of the Earth, or 264 gigapascals, using lab-grown nanocrystalline-diamond micro-anvil," said Yogesh Vohra, Ph.D., a professor and university scholar of physics in the UAB College of Arts and Sciences. "But the goal is one terapascal, which is the pressure close to the center of Saturn. We are one-quarter of the way there."
One terapascal, a scientific measure of pressure, is equal to 147 million pounds per square inch.
One key to high pressure is to make the point of the anvil, where the pressure is applied, very narrow. This magnifies the pressure applied by a piston above the micro-anvil, much like the difference of being stepped on by a spiked high heel rather than a loafer.
A more difficult task is how to make an anvil that is able to survive this ultra-high pressure. The solution for the Vohra team is to grow a nanocrystalline pillar of diamond -- 30 micrometers wide and 15 micrometers tall -- on the culet of a gem diamond. The culet is the flat surface at the bottom of a gemstone.
"We didn't know that we could grow nanocrystalline diamonds on a diamond base," Vohra said. "This has never been done before."
In the 264-gigapascal pressure test at Argonne National Laboratory in Lemont, Illinois, the nanocrystalline diamond showed no sign of deformation. Vohra and colleagues recently reported this result in the American Institute of Physics journal AIP Advances.
"The structure did not collapse when we applied pressure," Vohra said. "Nanocrystalline diamond has better mechanical properties than gem diamonds. The very small-sized grain structure makes it really tough."
As more micro-anvils are tested and improved, they will be used to study how transition metals, alloys and rare earth metals behave under extreme conditions. Just as graphitic carbon that is subjected to high pressure and temperature can turn into diamond, some materials squeezed by the micro-anvils may gain novel crystal modifications with enhanced physical and mechanical properties -- modifications that are retained when the pressure is released. Such new materials have potential applications in the aerospace, biomedical and nuclear industries.
The micro-anvils are made in a Class 7000 clean room in the UAB Diamond Microfabrication Lab, using maskless lithography and microwave plasma chemical vapor deposition.
Vohra says his research team wants to generate smaller grain sizes in the nanocrystalline diamond, which may make it even stronger; understand how the nanocrystalline diamond is bonded to the gem diamond; and use ion beams to machine the top of the micro-anvil to a hemispherical shape. That shape will mean an even narrower contact point, thus increasing the pressure.
Testing is done at Argonne because it has a very bright synchrotron X-ray source that can probe crystal structure of micron-sized materials under pressure. Vohra and two graduate students travel to Argonne about four times a year.
###
Besides Vohra, authors of the AIP Advances paper, "Nanocrystalline diamond micro-anvil grown on single crystal diamond as a generator of ultra-high pressures," are Gopi K. Samudrala, Samuel L. Moore, Georgiy M. Tsoi, Paul A. Baker, all of the UAB Department of Physics; and Nenad Velisavljevic, Los Alamos National Laboratory, New Mexico.
####
For more information, please click here
Contacts:
Jeff Hansen
205-209-2355
Copyright © University of Alabama at Birmingham
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Laboratories
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Research partnerships
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |