Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoscale engineering transforms particles into 'LEGO-like' building blocks

Tiny particles transformed into “LEGO- like” modular building blocks.
Tiny particles transformed into “LEGO- like” modular building blocks.

Abstract:
Led by the University of Melbourne and published today in Nature Nanotechnology, the work holds promise for micro and nano scale applications including drug delivery, chemical sensing and energy storage.

Nanoscale engineering transforms particles into 'LEGO-like' building blocks

Melbourne, Australia | Posted on October 12th, 2016

Frank Caruso, Professor and ARC Australian Laureate Fellow, Department of Chemical and Biomolecular Engineering said that the team nanoengineered building blocks to tailor the development of advanced materials.

"Nano-objects are difficult to manipulate, as they're too tiny to see directly by eye, far too small to hold, and often have incompatible surfaces for assembling into ordered structures," he said.

"Assembling LEGO bricks into complex shapes is relatively easy, as LEGO studs ensure the blocks stick together wherever you want.

"So we used a similar strategy as a basis for assembling nano-objects into complex architectures by first coating them with a universally adhesive material (a polyphenol) so that they resemble the studs on LEGO bricks.

"This allows for a range of nano-objects to stick together around a template, where the template determines the final shape of the assembled structure," Professor Caruso said.

Different materials can be assembled using this approach. This simple and modular approach has been demonstrated for 15 representative materials to form different sizes, shapes, compositions and functionalities.

Compositions include polymeric particles, metal oxide particles and wires, noble metal nanoparticles, coordination polymer nanowires, nanosheets and nanocubes, and biologicals.

The building blocks can be used to construct complex 3D superstructures, including core-satellite, hollow, hierarchically organised supraparticles, and macroscopic hybrid materials.

"Many previous methods have been limited by particle-specific assembly," Professor Caruso said.

"However, this new polyphenol-based particle approach can be adapted to different functions and allows different building blocks to be assembled into super-structures," he said.

The "studs" in the LEGO brick-like structures, known as C/G studs from the polyphenols, provide a superstructuring process for assembling and inter-locking the building blocks using multiple anchor points.

The "C/G studs" on the building block nanoparticles can further interact with a secondary substrate and/or coordinate with metal ions, interlocking the structures.

This provides a platform for the rapid generation of superstructured assemblies with enhanced chemical diversity and structural flexibility across a wide range of length scales, from nanometres to centimetres.

####

For more information, please click here

Contacts:
Anne Rahilly

61-390-355-380

Copyright © University of Melbourne

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project