Home > Press > Comet dust under the microscope
Comet Tschuri on January 17, 2016. His dust particles will provide valuable information about our solar system. Quelle: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA |
Abstract:
Comet dust from the Rosetta mission is providing insights into the origins of our Solar System. A research project focussing on the dust, which is supported by the Austrian Science Fund FWF and being carried at the Space Research Institute (IWF) of the Austrian Academy of Sciences, has direct access to data from a high resolution atomic force microscope on board the Rosetta orbiter.
The European Space Agency's (ESA) Rosetta mission to comet 67P/Churyumov–Gerasimenko ("Tchouri") has caused quite a stir. A project funded by the Austrian Science Fund FWF is now working on the analysis of this dust. The project leader, British scientist Mark Bentley, Principal Investigator of the MIDAS instrument on board the Rosetta, has just published the initial findings of the research in the journal Nature.
A SCIENTIFIC TREASURE CHEST
MIDAS, the Micro-Imaging Dust Analysis System, is a special microscope on board the Rosetta orbiter, designed, built and operated by a consortium led by IWF Graz. The instrument collects dust from the comet's surroundings and analyses it. Mark Bentley firmly believes that the analysis of the comet dust will prove to be a scientific treasure chest: "Comets are among the earliest bodies of our Solar System. They have survived its billions of years of evolution almost unchanged, and they can provide information about the origin of the Sun and planets." And this is precisely what is being investigated using the data collected by MIDAS.
CUTTING-EDGE TECHNOLOGY
MIDAS is a specially constructed atomic force microscope that enables the analysis of dust particles at a resolution of just a few nanometres. To attain this high resolution, an extremely fine needle scans the surface of an object and the deflection of the tip by the surface structure is measured. "MIDAS allows us to create three-dimensional images of the grains of comet dust. This is crucially important for our project," says Mark Bentley, explaining another aspect of the measuring method.
MULTIFACETED DUST
Like the dust he is analysing, the aims of Bentley's research are multifaceted. He wants to determine the shape and size of different comet dust particles, analyse their surface structures, and identify the sub-grains, from which the particles are formed. As Bentley explains, thanks to the use of an additional operating mode provided by MIDAS, he will be able to extend the range of his tests even further: "We can also use MIDAS to measure magnetism. This will enable us to measure the magnetic material in the comet dust, which will tell us a lot about possible magnetic fields in the early Solar System."
SLOW SCIENCE
The Rosetta mission offers a particularly crucial advantage for Bentley's research: relative to the comet, the probe moves at a snail's pace. This means that the dust can be collected gently and without being damaged. Bentley explains: "Earlier missions flew by various comets at a very high speed. This resulted in the particles being damaged during collection, so they were no longer in their original state. This is not the case with Rosetta." The dust is collected from the comet coma, the mixture of dust and gas that surrounds the comet. The careful collection method combined with the very high resolution offered by MIDAS also enables tests to be carried out on the size distribution of dust particles in the coma, on fragmentation mechanisms, and on temporal and seasonal changes in the dust particles.
SPECIAL POWERS
Thanks to the successful "couple's dance" between 67P and the Rosetta probe, which has been under way for some time now, it has already been possible to collect sufficient dust to carry out highly informative qualitative and quantitative analyses. MIDAS has already elicited considerable volumes of data from the dust. Bentley also had another scientific ace up his sleeve: because he was responsible for operating MIDAS, he not only had direct access to the very latest data from space, he could also have targeted measurements of the dust particles carried out, which furthered his research. As a result, this FWF project will make an important contribution to the understanding of our Solar System.
Personal details
Mark S. Bentley ( http://www.lunartech.org ) carries out research at the Space Research Institute ( http://www.iwf.oeaw.ac.at/index.php?id=448&L=1 ) of the Austrian Academy of Sciences ( http://www.oeaw.ac.at/en/austrian-academy-of-sciences/ ) in Graz. The analysis of comets and other small celestial bodies has been a significant aspect of his work in both academic and industrial research to date. He also studies space weather. He has been Principal Investigator of MIDAS ( http://blogs.esa.int/rosetta/2014/03/26/introducing-midas-rosettas-micro-imaging-dust-analysis-system/ ) on board the orbiter of the ESA Rosetta ( http://rosetta.esa.int ) mission since 2013.
####
For more information, please click here
Contacts:
Scientific Contact:
Dr. Mark S. Bentley
Austrian Academy of Sciences
Space Research Institute
Schmiedlstraße 6
8042 Graz, Austria
T +43 / 316 / 4120 - 657
W http://www.iwf.oeaw.ac.at/en/
Austrian Science Fund FWF:
Marc Seumenicht
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / 1 / 505 67 40 - 8111
W http://www.fwf.ac.at/en/
Copy Editing & Distribution:
PR&D – Public Relations for
Research & Education
Mariannengasse 8
1090 Vienna, Austria
T +43 / 1 / 505 70 44
W http://www.prd.at/en/
Dr. Katharina Schnell
PR-Beraterin
T +43 1 505 70 44
A 1090 Wien
W http://www.prd.at
Copyright © PR&D - Public Relations für Forschung & Bildung GmbH
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
Imaging
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Aerospace/Space
Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024
Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024
Bridging light and electrons January 12th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||