Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues

Rotational disorder affects thermal conductivity in superatom crystals.
CREDIT: Ryan Hastie, Department of Chemistry, Columbia University
Rotational disorder affects thermal conductivity in superatom crystals. CREDIT: Ryan Hastie, Department of Chemistry, Columbia University

Abstract:
Researchers found that the thermal conductivity of superatom crystals is directly related to the rotational disorder within those structures. The findings were published in an article in Nature Materials this week.

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues

Pittsburgh, PA | Posted on September 8th, 2016

Carnegie Mellon University's Associate Professor of Mechanical Engineering Jonathan A. Malen was a corresponding author of the paper titled "Orientational Order Controls Crystalline and Amorphous Thermal Transport in Superatomic Crystals."

Superatom crystals are periodic--or regular--arrangements of C60 fullerenes and similarly sized inorganic molecular clusters. The nanometer sized C60s look like soccer balls with C atoms at the vertices of each hexagon and pentagon.

"There are two nearly identical formations, one that has rotating (i.e. orientationally disordered) C60s and one that has fixed C60s," said Malen. "We discovered that the formation that contained rotating C60s has low thermal conductivity while the formation with fixed C60s has high thermal conductivity."

Although rotational disorder is known in bulk C60, this is the first time that the process has been leveraged to create very different thermal conductivities in structurally identical materials.

Imagine a line of people passing sandbags from one end to the other. Now imagine a second line where each person is spinning around--some clockwise, some counter clockwise, some fast, and some slow. It would be very difficult to move a sandbag down that line.

"This is similar to what is happening with thermal conductivity in the superatoms," explained Malen. "It is easier to transfer heat energy along a fixed pattern than a disordered one."

Columbia University's Assistant Professor of Chemistry Xavier Roy, the other corresponding author of the study, created the superatom crystals in his laboratory by synthesizing and assembling the building blocks into the hierarchical superstructures.

"Superatom crystals represent a new class of materials with potential for applications in sustainable energy generation, energy storage, and nanoelectronics," said Roy. "Because we have a vast library of superatoms that can self-assemble, these materials offer a modular approach to create complex yet tunable atomically precise structures."

The researchers believe that these findings will lead to further investigation into the unique electronic and magnetic properties of superstructured materials. One future application might include a new material that could change from being a thermal conductor to a thermal insulator, opening up the potential for new kinds of thermal switches and transistors.

"If we could actively control rotational disorder, we would create a new paradigm for thermal transport," said Malen.

###

Additional Carnegie Mellon investigators included postdoctoral researcher and alumnus Wee-Liat Ong, Patrick S. M. Dougherty, Alan J. H. McGaughey, and C. Fred Higgs. Ong is jointly advised by Malen and Roy as part of a National Science Foundation MRSEC grant led by Columbia University. Other Columbia University researchers included E. O'Brien and D. Paley.

Malen, director of the Malen Laboratory at Carnegie Mellon, received the College of Engineering's Outstanding Research Award in 2016.

####

About Carnegie Mellon University
About the College of Engineering: The College of Engineering at Carnegie Mellon University is a top-ranked engineering college that is known for our intentional focus on cross-disciplinary collaboration in research. The College is well-known for working on problems of both scientific and practical importance. Our acclaimed faculty have a focus on innovation management and engineering to yield transformative results that will drive the intellectual and economic vitality of our community, nation and world.

For more information, please click here

Contacts:
Lisa Kulick

412-268-5444

Copyright © Carnegie Mellon University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For more information, read the Nature Materials article: "Orientational Order Controls Crystalline and Amorphous Thermal Transport in Superatomic Crystals.":

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Nanoelectronics

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project