Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Location matters in the self-assembly of nanoclusters: Iowa State University scientists have developed a new formulation to explain an aspect of the self-assembly of nanoclusters on surfaces that has broad applications for nanotechnology

Capture zones (CZs) constructed to surround 2-D islands (black rectangles) formed by deposition on a perfect surface. CZ boundaries are indicated by thin lines. The CZs completely cover or tessellate the surface with one CZ per island. A small CZ formed directly by nucleation of a new island near the center of a triangle of existing islands is shown in yellow. Another small CZ formed by corralling of the central island is shown in blue. The lower inset shows how nucleation of a new island (at the X) modifies the CZ distribution. The upper inset shows the distribution of scaled CZ areas.
CREDIT: Yong Han, Maozhi Li and James W. Evans
Capture zones (CZs) constructed to surround 2-D islands (black rectangles) formed by deposition on a perfect surface. CZ boundaries are indicated by thin lines. The CZs completely cover or tessellate the surface with one CZ per island. A small CZ formed directly by nucleation of a new island near the center of a triangle of existing islands is shown in yellow. Another small CZ formed by corralling of the central island is shown in blue. The lower inset shows how nucleation of a new island (at the X) modifies the CZ distribution. The upper inset shows the distribution of scaled CZ areas.

CREDIT: Yong Han, Maozhi Li and James W. Evans

Abstract:
Scientists at Iowa State University have developed a new formulation that helps to explain the self-assembly of atoms into nanoclusters and to advance the scientific understanding of related nanotechnologies. Their research offers a theoretical framework to explain the relationship between the distribution of "capture zones," the regions that surround the nanoscale "islands" formed by deposition on surfaces, and the underlying nucleation or formation process.

Location matters in the self-assembly of nanoclusters: Iowa State University scientists have developed a new formulation to explain an aspect of the self-assembly of nanoclusters on surfaces that has broad applications for nanotechnology

Washington, DC | Posted on September 8th, 2016

Nanotechnology involves science and engineering at the size of a nanometer, or a billionth of a meter. It has been central to the development of innovations like thin film solar panels, improved batteries and lower-cost sensors.

The self-assembly of atoms into nanoclusters is a subject of significant interest to nanotechnologists because it offers the potential to create nanostructured systems with enhanced magnetic, catalytic and plasmonic properties that have many industrial applications.

"If you have the ability to control these self-assembly processes to direct the morphology and spatial arrangement of these nanostructures, then you can enhance the properties that you're interested in," said James W. Evans, a professor of physics at Iowa State University.

Evans and his team, who were funded by the National Science Foundation, detail their approach this week in The Journal of Chemical Physics, from AIP Publishing.

While the physical science community had previously considered the size distribution of nucleated islands during the self-assembly of deposited atoms, more recent discussion has centered around the distribution of the islands' capture zones. Evans and his collaborators focused on crafting a theoretical basis for understanding how small capture zones develop. Their development has important implications for determining the size that a nucleated island must reach to become stable. Their analysis combines rate equations with elements of stochastic geometry.

One of several significant insights that emerged from their research was the importance of the spatial location of nucleation events relative to existing capture zones and islands in the formation of new, smaller capture zones.

"If you nucleate right in the middle of a triplet of islands that are much closer together than what is typical, the capture zone of the new island that is created is much smaller than the average size," Evans said. To emphasize this relationship of how the size of capture zones and their resulting distribution could be affected by nucleation, their work shows the relationship of how the size of capture zones and their resulting distribution could be affected by nucleation.

Evans and his team included a theoretical study on the capture zone distribution (CZD) of compact islands including a derivation of an equation for the scaling function of the capture zone distribution. In addition to the theoretical results, the authors included simulation results using Kinetic Monte Carlo to confirm the predictions of the island distribution and scaling behavior, obtaining in general good agreement between theoretical and numerical results. The formulations of Evans and co-workers highlights the importance of subtle spatial details of the nucleation process, and specifically of related quantities such as the intrinsic overlap probabilities and fractional overlap distribution. These quantities have received limited attention in the past but their detailed form is important as it impacts that of the CZD.

One of the challenges of this research is that it centers on a far-from-equilibrium system, which defies many of the conventional analytical methods utilized by physical scientists.

"The fact that this is a far-from-equilibrium system means that there aren't standard theoretical tools that you can apply to analyze the process," explained Evans.

Still, with extensive simulations that reflect deposition experiments typically conducted in ultrahigh vacuum chambers, Evans and his team have managed to develop a framework to explain how smaller capture zones are generated. The scientists hope that their work prompts other researchers to examine the question of capture zone area distributions as well because the collective insights generated will advance the broader scientific community's understanding of how nanoclusters assemble.

###

This paper is part of a collection of papers to be published in a special issue of The Journal of Chemical Physics, from AIP Publishing. The issue, "Nucleation: New Concepts and Discoveries" with Guest Editors Kenneth Kelton and Daan Frenkel will be published in December 2016.

####

About American Institute of Physics
The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See http://jcp.aip.org.

For more information, please click here

Contacts:
AIP Media Line

301-209-3090

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, "Capture Zone Area Distributions for Nucleation and Growth of Islands during Submonolayer Deposition," is authored by Yong Han, Maozhi Li and James W. Evans. The article will appear in The Journal of Chemical Physics on September 6, 2016 [DOI: 10.1063/1.4961264]. After that date, it can be accessed at :

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Molecular Nanotechnology

Quantum pumping in molecular junctions August 16th, 2024

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Self Assembly

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project