Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New optical material offers unprecedented control of light and thermal radiation

The picture shows a layer of phase-transition material SmNiO3 placed on top of a Columbia Engineering School logo. The transparency of the material can be controlled by electron doping under ambient conditions. Pristine SmNiO3 is opaque; partial phase-transition makes the material translucent, and complete phase-transition makes it transparent.
CREDIT: Nanfang Yu, Columbia Engineering
The picture shows a layer of phase-transition material SmNiO3 placed on top of a Columbia Engineering School logo. The transparency of the material can be controlled by electron doping under ambient conditions. Pristine SmNiO3 is opaque; partial phase-transition makes the material translucent, and complete phase-transition makes it transparent.

CREDIT: Nanfang Yu, Columbia Engineering

Abstract:
Columbia Engineers discover that samarium nickelate shows promise for active photonic devices - SmNiO3 could potentially transform optoelectronic technologies, including smart windows, infrared camouflage, and optical communications.

New optical material offers unprecedented control of light and thermal radiation

New York, NY | Posted on September 1st, 2016

A team led by Nanfang Yu, assistant professor of applied physics at Columbia Engineering, has discovered a new phase-transition optical material and demonstrated novel devices that dynamically control light over a much broader wavelength range and with larger modulation amplitude than what has currently been possible. The team, including researchers from Purdue, Harvard, Drexel, and Brookhaven National Laboratory, found that samarium nickelate (SmNiO3) can be electrically tuned continuously between a transparent and an opaque state over an unprecedented broad range of spectrum from the blue in the visible (wavelength of 400 nm) to the thermal radiation spectrum in the mid-infrared (wavelength of a few tens of micrometers). The study, which is the first investigation of the optical properties of SmNiO3 and the first demonstration of the material in photonic device applications, is published online today in Advanced Materials.

"The performance of SmNiO3 is record-breaking in terms of the magnitude and wavelength range of optical tuning," Yu says. "There is hardly any other material that offers such a combination of properties that are highly desirable for optoelectronic devices. The reversible tuning between the transparent and opaque states is based on electron doping at room temperature, and potentially very fast, which opens up a wide range of exciting applications, such as 'smart windows' for dynamic and complete control of sunlight, variable thermal emissivity coatings for infrared camouflage and radiative temperature control, optical modulators, and optical memory devices."

Some of the potential new functions include using SmNiO3's capability in controlling thermal radiation to build "intelligent" coatings for infrared camouflage and thermoregulation. These coatings could make people and vehicles, for example, appear much colder than they actually are and thus indiscernible under a thermal camera at night. The coating could help reduce the large temperature gradients on a satellite by adjusting the relative thermal radiation from its bright and dark side with respect to the sun and thereby prolong the lifetime of the satellite. Because this phase-transition material can potentially switch between the transparent and opaque states with high speed, it may be used in modulators for free-space optical communication and optical radar and in optical memory devices.

Researchers have long been trying to build active optical devices that can dynamically control light. These include Boeing 787 Dreamliner's "smart windows," which control (but not completely) the transmission of sunlight, rewritable DVD discs on which we can use a laser beam to write and erase data, and high-data-rate, long-distance fiber optic communications systems where information is "written" into light beams by optical modulators. Active optical devices are not more common in everyday life, however, because it has been so difficult to find advanced actively tunable optical materials, and to design proper device architectures that amplify the effects of such tunable materials.

When Shriram Ramanathan, associate professor of materials science at Harvard, discovered SmNiO3's giant tunable electric resistivity at room temperature, Yu took note. The two met at the IEEE Photonics Conference in 2013 and decided to collaborate. Yu and his students, working with Ramanathan, who is a co-author of this paper, conducted initial optical studies of the phase-transition material, integrated the material into nanostructured designer optical interfaces--"metasurfaces"--and created prototype active optoelectronic devices, including optical modulators that control a beam of light, and variable emissivity coatings that control the efficiency of thermal radiation.

"SmNiO3 is really an unusual material," says Zhaoyi Li, the paper's lead author and Yu's PhD student, "because it becomes electrically more insulating and optically more transparent as it is doped with more electrons--this is just the opposite of common materials such as semiconductors."

It turns out that doped electrons "lock" into pairs with the electrons initially in the material, a quantum mechanical phenomenon called "strong electron correlation," and this effect makes these electrons unavailable to conduct electric current and absorbing light. So, after electron doping, SmNiO3 thin films that were originally opaque suddenly allow more than 70 percent of visible light and infrared radiation to transmit through.

"One of our biggest challenges," Zhaoyi adds, "was to integrate SmNiO3 into optical devices. To address this challenge, we developed special nanofabrication techniques to pattern metasurface structures on SmNiO3 thin films. In addition, we carefully chose the device architecture and materials to ensure that the devices can sustain high temperature and pressure that are required in the fabrication process to activate SmNiO3."

Yu and his collaborators plan next to run a systematic study to understand the basic science of the phase transition of SmNiO3 and to explore its technological applications. The team will investigate the intrinsic speed of phase transition and the number of phase-transition cycles the material can endure before it breaks down. They will also work on addressing technological problems, including synthesizing ultra-thin and smooth films of the material and developing nanofabrication techniques to integrate the material into novel flat optical devices.

"This work is one crucial step towards realizing the major goal of my research lab, which is to make an optical interface a functional optical device," Yu notes. "We envision replacing bulky optical devices and components with 'flat optics' by utilizing strong interactions between light and two-dimensional structured materials to control light at will. The discovery of this phase-transition material and the successful integration of it into a flat device architecture are a major leap forward to realizing active flat optical devices not only with enhanced performance from the devices we are using today, but with completely new functionalities."

Yu's team included Ramanathan, his Harvard PhD student You Zhou, and his Purdue postdoctoral fellow Zhen Zhang, who synthesized the phase-transition material and did some of the phase transition experiments (this work began at Harvard and continued when Ramanathan moved to Purdue); Drexel University Materials Science Professor Christopher Li, PhD student Hao Qi, and research scientist Qiwei Pan, who helped make solid-state devices by integrating SmNiO3 with novel solid polymer electrolytes; and Brookhaven National Laboratory staff scientists Ming Lu and Aaron Stein, who helped device nanofabrication. Yuan Yang, Assistant Professor of Materials Science and Engineering in the Department of Applied Physics and Applied Mathematics at Columbia Engineering, was consulted during the progress of this research.

###

The study was funded by DARPA YFA (Defense Advanced Research Projects Agency Young Faculty Award), ONR YIP (Office of Naval Research Young Investigator Program), AFOSR MURI (Air Force Office of Scientific Research Multidisciplinary University Research Initiative) on metasurfaces, Army Research Office, and NSF EPMD (Electronics, Photonics, and Magnetic Devices) program.

FUNDING: The work was supported by Defense Advanced Research Projects Agency Young Faculty Award (Grant No.D15AP00111), Office of Naval Research Young Investigator Award program (Grant No. N00014-16-1-2442), Air Force Office of Scientific Research (Grant No. FA9550-14-1-0389 through a Multidisciplinary University Research Initiative program, and Grant No. FA9550-12-1-0189), National Science Foundation (Grant No. ECCS-1307948), and Army Research Office (Grant Nos.W911NF-16-1-0042 and W911NF-14-1-0669). Research was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. The authors acknowledge helpful discussions with Yuan Yang, Assistant Professor of Materials Science and Engineering in the Department of Applied Physics and Applied Mathematics, Columbia Engineering.

####

About Columbia University School of Engineering and Applied Science
Columbia Engineering is one of the top engineering schools in the U.S. and one of the oldest in the nation. Based in New York City, the School offers programs to both undergraduate and graduate students who undertake a course of study leading to the bachelor's, master's, or doctoral degree in engineering and applied science. Columbia Engineering's nine departments offers 16 majors and more than 30 minors in engineering and the liberal arts, including an interdisciplinary minor in entrepreneurship with Columbia Business School. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to a broad array of basic and advanced research installations, from the Columbia Nano Initiative and Data Science Institute to the Columbia Genome Center. These interdisciplinary centers in science and engineering, big data, nanoscience, and genomic research are leading the way in their respective fields while our engineers and scientists collaborate across the University to solve theoretical and practical problems in many other significant areas.

For more information, please click here

Contacts:
Holly Evarts

347-453-7408

Copyright © Columbia University School of Engineering and Applied Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

PAPER:

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Optical computing/Photonic computing

Programmable electron-induced color router array May 14th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Materials/Metamaterials/Magnetoresistance

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Photonics/Optics/Lasers

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Programmable electron-induced color router array May 14th, 2025

Research partnerships

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project