Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A promising route to the scalable production of highly crystalline graphene films

Transmission electron microscope images observed from the reduced graphene oxide films prepared by ethanol treatment at (a) 900ºC and (b) 1100ºC. For the high temperature treatment, the periodic bright spots are observed in the reduced graphene oxide films. This means that the crystallinity of the reduced graphene oxide is efficiently improved by high temperature treatment in ethanol environment.
CREDIT: Osaka University
Transmission electron microscope images observed from the reduced graphene oxide films prepared by ethanol treatment at (a) 900ºC and (b) 1100ºC. For the high temperature treatment, the periodic bright spots are observed in the reduced graphene oxide films. This means that the crystallinity of the reduced graphene oxide is efficiently improved by high temperature treatment in ethanol environment.

CREDIT: Osaka University

Abstract:
Researchers discovered a procedure to restore defective graphene oxide structures that cause the material to display low carrier mobility. By applying a high-temperature reduction treatment in an ethanol environment, defective structures were restored, leading to the formation of a highly crystalline graphene film with excellent band-like transport. These findings are expected to come into use in scalable production techniques of highly crystalline graphene films.

A promising route to the scalable production of highly crystalline graphene films

Osaka, Japan | Posted on August 26th, 2016

Graphene is a material with excellent electric conductivity, mechanical strength, chemical stability, and a large surface area. Its structure consists of a one-atom-thick layer of carbon atoms. Due to its positive attributes, research on its synthesis and application to electronic devices is being conducted around the world. While it is possible to create graphene from graphene oxide (GO), a material produced by chemical exfoliation from graphite through oxidative treatment, this treatment causes defective structures and the existence of oxygen-containing groups, causing GO to display low conducting properties. So far, carrier mobility, the basic indicator with which transistor performance is expressed, remained at a few cm2/Vs at most. A group of researchers led by Ryota Negishi, assistant professor, and Yoshihiro Kobayashi, professor, Graduate School of Engineering, Osaka University; Masashi Akabori, associate professor, Japan Advanced Institute of Science and Technology; Takahiro Ito, associate professor, Graduate School of Engineering, Nagoya University; and Yoshio Watanabe, Vice Director, Aichi Synchrotron Radiation Center, have developed a reduction treatment through which the crystallinity of GO was drastically improved.

The researchers coated a substrate with 1-3 extremely thin layers of GO and added a small amount of ethanol to the up to 1100°C high temperature reduction process. The addition of the carbon-based ethanol gas led to the effective restoration of the defective graphene structure. For the first time in the world, this group managed to observe a band-like transport reflecting the intrinsic electric transport properties in chemically reduced GO films. Band-like transport is a conduction mechanism in which the carriers use the periodic electric mechanisms in solid crystals as a transmission wave. The observed band transport in this study achieved a carrier mobility of ~210 cm2/Vs, currently the highest level observed in chemically reduced GO films.

The successful creation of thin graphene films achieved through the above reduction method has opened up the possibility of their application in a diverse set of electronic devices and sensors. The findings of this research group form a milestone in the development of scalable materials that utilize graphene's excellent physical properties.

This research was featured in Scientific Reports (Nature Publishing Group) on July 1, 2016.

####

For more information, please click here

Contacts:
Saori Obayashi

81-661-055-886

Copyright © Osaka University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project