Home > Press > A promising route to the scalable production of highly crystalline graphene films
Transmission electron microscope images observed from the reduced graphene oxide films prepared by ethanol treatment at (a) 900ºC and (b) 1100ºC. For the high temperature treatment, the periodic bright spots are observed in the reduced graphene oxide films. This means that the crystallinity of the reduced graphene oxide is efficiently improved by high temperature treatment in ethanol environment. CREDIT: Osaka University |
Abstract:
Researchers discovered a procedure to restore defective graphene oxide structures that cause the material to display low carrier mobility. By applying a high-temperature reduction treatment in an ethanol environment, defective structures were restored, leading to the formation of a highly crystalline graphene film with excellent band-like transport. These findings are expected to come into use in scalable production techniques of highly crystalline graphene films.
Graphene is a material with excellent electric conductivity, mechanical strength, chemical stability, and a large surface area. Its structure consists of a one-atom-thick layer of carbon atoms. Due to its positive attributes, research on its synthesis and application to electronic devices is being conducted around the world. While it is possible to create graphene from graphene oxide (GO), a material produced by chemical exfoliation from graphite through oxidative treatment, this treatment causes defective structures and the existence of oxygen-containing groups, causing GO to display low conducting properties. So far, carrier mobility, the basic indicator with which transistor performance is expressed, remained at a few cm2/Vs at most. A group of researchers led by Ryota Negishi, assistant professor, and Yoshihiro Kobayashi, professor, Graduate School of Engineering, Osaka University; Masashi Akabori, associate professor, Japan Advanced Institute of Science and Technology; Takahiro Ito, associate professor, Graduate School of Engineering, Nagoya University; and Yoshio Watanabe, Vice Director, Aichi Synchrotron Radiation Center, have developed a reduction treatment through which the crystallinity of GO was drastically improved.
The researchers coated a substrate with 1-3 extremely thin layers of GO and added a small amount of ethanol to the up to 1100°C high temperature reduction process. The addition of the carbon-based ethanol gas led to the effective restoration of the defective graphene structure. For the first time in the world, this group managed to observe a band-like transport reflecting the intrinsic electric transport properties in chemically reduced GO films. Band-like transport is a conduction mechanism in which the carriers use the periodic electric mechanisms in solid crystals as a transmission wave. The observed band transport in this study achieved a carrier mobility of ~210 cm2/Vs, currently the highest level observed in chemically reduced GO films.
The successful creation of thin graphene films achieved through the above reduction method has opened up the possibility of their application in a diverse set of electronic devices and sensors. The findings of this research group form a milestone in the development of scalable materials that utilize graphene's excellent physical properties.
This research was featured in Scientific Reports (Nature Publishing Group) on July 1, 2016.
####
For more information, please click here
Contacts:
Saori Obayashi
81-661-055-886
Copyright © Osaka University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||