Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems

Electromagnetic antenna in transmitting (a) and receiving (b) modes.
CREDIT: Moscow Institute of Physics and Technology
Electromagnetic antenna in transmitting (a) and receiving (b) modes.

CREDIT: Moscow Institute of Physics and Technology

Abstract:
A team of physicists from ITMO University (Saint Petersburg) and Moscow Institute of Physics and Technology (MIPT) has demonstrated the potential of silicon nanoparticles for effective non-linear light manipulation. Their work lays the foundation for the development of novel optical devices with a wide range of functionalities. These silicon nanoparticles based devices would allow to transmit, reflect, or scatter incident light in a specified direction, depending on its intensity. They could be integrated into microchips that would enable ultrafast all-optical signal processing in optical communication lines and the next generation optical computers.

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems

Moscow, Russia | Posted on August 25th, 2016

Non-linear antennas

Electromagnetic waves of a wide spectral range are used to transmit information: from radio waves that carry radio signals over the air to infrared radiation and visible light used in telecommunications to transfer data through fibre optics. An essential component of any equipment that relies on electromagnetic waves for information transmission and processing is a device called the antenna, which is designed to either receive or transmit signals in a particular direction. It is often the case that incoming signals need to be flexibly processed. This requires the use of a reconfigurable antenna, i.e. one whose characteristics (e.g. its radiation pattern) can be changed in a specific manner during signal processing. One possible solution relies on the use of a non-linear antenna, which can be switched by the incident light itself.

Denis Baranov, a PhD student at MIPT and one of the authors of the study, comments on the research findings: 'It is a top priority -- and at the same time a major challenge -- to develop such tuneable antennas operating at infrared and optical frequencies. Nowadays, we can already transmit information through fibre optics at incredible speeds of up to hundreds of Gbit/s. However, silicon-based electronics are unable to process the incoming data at that rate. Non-linear nanoantennas that work at optical wavelengths could help us to resolve this problem and make ultrafast all-optical signal processing possible.'

Silicon nanoparticles

To demonstrate non-linear switching, the authors of the paper, which was published in ACS Photonics, have studied a dielectric nanoantenna -- an optically resonant spherical nanoparticle made of silicon. While spherical particles of all sizes show resonances, it is the size of the particle that determines its resonant wavelength. The first of these resonances, which can be observed at the longest wavelength, is the magnetic dipole resonance. Incident light of a certain wavelength induces a circular electric current in the particle, similar to the current that flows in a closed circuit. Because silicon has a high refractive index, particles with diameters approaching 100 nm will already show the magnetic dipole resonance at optical frequencies, making them useful for enhancing various optical effects at the nanoscale. The team has used silicon nanosphere resonances to enhance Raman scattering in an earlier study, which is detailed in another article.

The optical properties of a non-linear silicon nanoantenna are manipulated by means of electron plasma generation (Fig. 2). As silicon is a semiconductor, there are almost no electrons in its conduction band under normal conditions. However, exposing it to a laser pulse of high intensity and very short duration (?100 femtoseconds, i.e. about 10?¹³ or one ten-trillionth of a second) excites the electrons into the conduction band. This significantly alters the properties of the material as well as the behaviour of the silicon nanoantenna itself, causing it to scatter light in the direction of the incident pulse. Thus, by exposing a particle to a short and intense pulse, its behaviour as an antenna can be dynamically controlled.

In order to demonstrate ultrafast nanoantenna switching, the authors of the study carried out a series of experiments, which involved the irradiation of an array of silicon nanoparticles with a short and intense laser pulse and a continuous measurement of their transmittance. The researchers observed that the transmission coefficient of a structure changed by several per cent within 100 femtoseconds and then gradually returned to its initial value.

On the basis of the experimental results, the researchers went on to develop an analytical model that describes the ultrafast non-linear dynamics of the nanoantenna examined in the study, as well as the generation and relaxation of electron plasma in silicon. According to the model, a radical change in the scattering diagram of the antenna (Fig. 3) occurs within a very short period of time -- on the order of 100 femtoseconds. Before the pulse arrival, the amount of energy scattered by the particle in the forward direction is nearly the same as in the backward direction. However, driven by a short pulse, the antenna switches to almost perfectly unidirectional forward-scattering. Theoretical predictions backed by the experimental data suggest that an antenna of this kind would have a bandwidth of about 250 Gbit/s, whereas conventional silicon-based electronics rely on components with bandwidths limited to only tens of Gbit/s.

Concluding remarks: there's more to come

The experiments performed by the authors of the study have demonstrated ultrafast nanoantenna switching between different light scattering modes, which is caused by the interaction of an intense laser pulse with the silicon of the nanostructure. The researchers have developed an analytical theory describing the behaviour of such non-linear nanoantennas.

'The research shows that silicon nanoparticles might well become the basis for developing ultrafast optical nanodevices. Our model can be used to design nanostructures containing silicon particles that are more complex, which would enable us to manipulate light in a most unusual way. For example, we hope to eventually control not just the amplitude of an optical signal but also its direction. We expect to be able to "turn" it by a specified angle on an ultrafast timescale,' says Sergey Makarov, a senior researcher at the Department (Chair) of Nanophotonics and Metamaterials of the ITMO University.

####

For more information, please click here

Contacts:
Asya Shepunova

Copyright © Moscow Institute of Physics and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Wireless/telecommunications/RF/Antennas/Microwaves

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Chip-based dispersion compensation for faster fibre internet: SUTD scientists developed a novel CMOS-compatible, slow-light-based transmission grating device for the dispersion compensation of high-speed data, significantly lowering data transmission errors and paving the way for June 30th, 2023

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Optical computing/Photonic computing

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project