Home > Press > New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors
he best of both worlds. A new nanomaterial acts as both battery and supercapacitor: A conductive polymer (green) formed inside the small holes of a hexagonal framework (red and blue) works with the framework to store electrical energy rapidly and efficiently. Credit: William Dichtel, Northwestern University |
Abstract:
A powerful new material developed by Northwestern University chemist William Dichtel and his research team could one day speed up the charging process of electric cars and help increase their driving range.
A Northwestern University chemist and his research team have developed a modified covalent organic framework (COF) material that can power a light-emitting diode.
CREDIT: American Chemical Society
An electric car currently relies on a complex interplay of both batteries and supercapacitors to provide the energy it needs to go places, but that could change.
"Our material combines the best of both worlds -- the ability to store large amounts of electrical energy or charge, like a battery, and the ability to charge and discharge rapidly, like a supercapacitor," said Dichtel, a pioneer in the young research field of covalent organic frameworks (COFs).
Dichtel and his research team have combined a COF -- a strong, stiff polymer with an abundance of tiny pores suitable for storing energy -- with a very conductive material to create the first modified redox-active COF that closes the gap with other older porous carbon-based electrodes.
"COFs are beautiful structures with a lot of promise, but their conductivity is limited," Dichtel said. "That's the problem we are addressing here. By modifying them -- by adding the attribute they lack -- we can start to use COFs in a practical way."
And modified COFs are commercially attractive: COFs are made of inexpensive, readily available materials, while carbon-based materials are expensive to process and mass-produce.
Dichtel, the Robert L. Letsinger Professor of Chemistry at the Weinberg College of Arts and Sciences, is presenting his team's findings today (Aug. 24) at the American Chemical Society (ACS) National Meeting in Philadelphia. Also today, a paper by Dichtel and co-authors from Northwestern and Cornell University was published by the journal ACS Central Science.
To demonstrate the new material's capabilities, the researchers built a coin-cell battery prototype device capable of powering a light-emitting diode for 30 seconds.
The material has outstanding stability, capable of 10,000 charge/discharge cycles, the researchers report. They also performed extensive additional experiments to understand how the COF and the conducting polymer, called poly(3,4-ethylenedioxythiophene) or PEDOT, work together to store electrical energy.
Dichtel and his team made the material on an electrode surface. Two organic molecules self-assembled and condensed into a honeycomb-like grid, one 2-D layer stacked on top of the other. Into the grid's holes, or pores, the researchers deposited the conducting polymer.
Each pore is only 2.3 nanometers wide, but the COF is full of these useful pores, creating a lot of surface area in a very small space. A small amount of the fluffy COF powder, just enough to fill a shot glass and weighing the same as a dollar bill, has the surface area of an Olympic swimming pool.
The modified COF showed a dramatic improvement in its ability to both store energy and to rapidly charge and discharge the device. The material can store roughly 10 times more electrical energy than the unmodified COF, and it can get the electrical charge in and out of the device 10 to 15 times faster.
"It was pretty amazing to see this performance gain," Dichtel said. "This research will guide us as we investigate other modified COFs and work to find the best materials for creating new electrical energy storage devices."
###
The research was conducted at Cornell University, where Dichtel was a faculty member until this summer, when he moved to Northwestern.
####
For more information, please click here
Contacts:
Megan Fellman
847-491-3115
Copyright © Northwestern University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||