Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Curbing the life-long effects of traumatic brain injury

Preventing long-term effects of traumatic brain injury could involve rushing nanoparticles across a weakened blood-brain barrier soon after a blow.
Credit: Nerthuz/Shutterstock.com
Preventing long-term effects of traumatic brain injury could involve rushing nanoparticles across a weakened blood-brain barrier soon after a blow.

Credit: Nerthuz/Shutterstock.com

Abstract:
A fall down the stairs, a car crash, a sports injury or an explosive blast can all cause traumatic brain injury (TBI). Patients often recover. But in the days or weeks following the hit, they can develop other serious, chronic conditions, such as depression and thinking and memory problems. Now scientists report in the journal ACS Nano a potential way to reduce these effects with a neuron-targeting nanoparticle, using an animal model of TBI.

Curbing the life-long effects of traumatic brain injury

Washington, DC | Posted on August 19th, 2016

When someone suffers from a head injury, the damage doesn't necessarily stop after the initial blow. The jolt can cause a cascade of after-effects -- such as inflammation and ultimately the death of brain cells -- and lead to physical and cognitive conditions that can continue for years. One promising approach to treating these after-effects involves delivering short stretches of RNA that can help shut down this chain reaction. But getting the RNA to the damaged part of the brain is a challenge because of the blood-brain barrier, which separates circulating blood from the fluid around brain cells. Sangeeta N. Bhatia and her colleagues at the Massachusetts Institute of Technology's Institute for Medical Engineering & Science wanted to see if they could rush therapeutic RNA to targeted brain cells soon after an injury while the blood-brain barrier is weakened.

The team, led by postdoctoral researcher Ester Kwon, engineered nanoparticles to target neurons by borrowing a protein from the rabies virus. They also loaded the particles with a strip of RNA designed to inhibit the production of a protein associated with neuronal cell death. When given to mice intravenously within a day of receiving a brain injury, the nanoparticles left the circulation and accumulated in the damaged tissue. Analysis also showed that the levels of the protein that the researchers were trying to reduce dropped by about 80 percent in the injured brain tissue.

###

The authors acknowledge funding from the Marie D. & Pierre Casimir-Lambert Fund, the David H. Koch Institute for Integrative Cancer Research at MIT, the National Cancer Institute, the National Institute of Environmental Health Sciences, the Defense Advanced Research Projects Agency and a Ruth L. Kirschstein National Research Service Award.

####

About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With nearly 157,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Michael Bernstein

202-872-6042

Sangeeta N. Bhatia, M.D., Ph.D.
Institute for Medical Engineering and Science
Massachusetts Institute of Technology
and the Howard Hughes Medical Institute
Cambridge, MA 02139
Email:

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

DOWNLOAD FULL-TEXT ARTICLE - "Neuron-Targeted Nanoparticle for siRNA Delivery to Traumatic Brain Injuries"

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project