Home > Press > Prototype chip could help make quantum computing practical: Built-in optics could enable chips that use trapped ions as quantum bits
![]() |
Researchers from MIT and MIT Lincoln Laboratory report an important step toward practical quantum computers, with a paper describing a prototype chip that can trap ions in an electric field and, with built-in optics, direct laser light toward each of them. |
Abstract:
Quantum computers are largely hypothetical devices that could perform some calculations much more rapidly than conventional computers can. Instead of the bits of classical computation, which can represent 0 or 1, quantum computers consist of quantum bits, or qubits, which can, in some sense, represent 0 and 1 simultaneously.
Although quantum systems with as many as 12 qubits have been demonstrated in the lab, building quantum computers complex enough to perform useful computations will require miniaturizing qubit technology, much the way the miniaturization of transistors enabled modern computers.
Trapped ions are probably the most widely studied qubit technology, but they've historically required a large and complex hardware apparatus. In today's Nature Nanotechnology, researchers from MIT and MIT Lincoln Laboratory report an important step toward practical quantum computers, with a paper describing a prototype chip that can trap ions in an electric field and, with built-in optics, direct laser light toward each of them.
"If you look at the traditional assembly, it's a barrel that has a vacuum inside it, and inside that is this cage that's trapping the ions. Then there's basically an entire laboratory of external optics that are guiding the laser beams to the assembly of ions," says Rajeev Ram, an MIT professor of electrical engineering and one of the senior authors on the paper. "Our vision is to take that external laboratory and miniaturize much of it onto a chip."
Caged in
The Quantum Information and Integrated Nanosystems group at Lincoln Laboratory was one of several research groups already working to develop simpler, smaller ion traps known as surface traps. A standard ion trap looks like a tiny cage, whose bars are electrodes that produce an electric field. Ions line up in the center of the cage, parallel to the bars. A surface trap, by contrast, is a chip with electrodes embedded in its surface. The ions hover 50 micrometers above the electrodes.
Cage traps are intrinsically limited in size, but surface traps could, in principle, be extended indefinitely. With current technology, they would still have to be held in a vacuum chamber, but they would allow many more qubits to be crammed inside.
"We believe that surface traps are a key technology to enable these systems to scale to the very large number of ions that will be required for large-scale quantum computing," says Jeremy Sage, who together with John Chiaverini leads Lincoln Laboratory's trapped-ion quantum-information-processing project. "These cage traps work very well, but they really only work for maybe 10 to 20 ions, and they basically max out around there."
Performing a quantum computation, however, requires precisely controlling the energy state of every qubit independently, and trapped-ion qubits are controlled with laser beams. In a surface trap, the ions are only about 5 micrometers apart. Hitting a single ion with an external laser, without affecting its neighbors, is incredibly difficult; only a few groups had previously attempted it, and their techniques weren't practical for large-scale systems.
Getting onboard
That's where Ram's group comes in. Ram and Karan Mehta, an MIT graduate student in electrical engineering and first author on the new paper, designed and built a suite of on-chip optical components that can channel laser light toward individual ions. Sage, Chiaverini, and their Lincoln Lab colleagues Colin Bruzewicz and Robert McConnell retooled their surface trap to accommodate the integrated optics without compromising its performance. Together, both groups designed and executed the experiments to test the new system.
"Typically, for surface electrode traps, the laser beam is coming from an optical table and entering this system, so there's always this concern about the beam vibrating or moving," Ram says. "With photonic integration, you're not concerned about beam-pointing stability, because it's all on the same chip that the electrodes are on. So now everything is registered against each other, and it's stable."
The researchers' new chip is built on a quartz substrate. On top of the quartz is a network of silicon nitride "waveguides," which route laser light across the chip. Above the waveguides is a layer of glass, and on top of that are the niobium electrodes. Beneath the holes in the electrodes, the waveguides break into a series of sequential ridges, a "diffraction grating" precisely engineered to direct light up through the holes and concentrate it into a beam narrow enough that it will target a single ion, 50 micrometers above the surface of the chip.
Prospects
With the prototype chip, the researchers were evaluating the performance of the diffraction gratings and the ion traps, but there was no mechanism for varying the amount of light delivered to each ion. In ongoing work, the researchers are investigating the addition of light modulators to the diffraction gratings, so that different qubits can simultaneously receive light of different, time-varying intensities. That would make programming the qubits more efficient, which is vital in a practical quantum information system, since the number of quantum operations the system can perform is limited by the "coherence time" of the qubits.
####
For more information, please click here
Contacts:
Abby Abazorius
617-253-2709
Copyright © Massachusetts Institute of Technology
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Quantum Physics
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Chip Technology
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Quantum Computing
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Optical computing/Photonic computing
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Photonics/Optics/Lasers
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Quantum nanoscience
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |