Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Iowa State scientists develop quick-destructing battery to power 'transient' devices

Iowa State scientists have developed a working battery that dissolves and disperses in water.
CREDIT: Scientific illustration by Ashley Christopherson
Iowa State scientists have developed a working battery that dissolves and disperses in water.

CREDIT: Scientific illustration by Ashley Christopherson

Abstract:
Self-destructing electronic devices could keep military secrets out of enemy hands. Or they could save patients the pain of removing a medical device. Or, they could allow environmental sensors to wash away in the rain.

Iowa State scientists develop quick-destructing battery to power 'transient' devices

Ames, IA | Posted on August 8th, 2016

Making such devices possible is the goal of a relatively new field of study called "transient electronics." These transient devices could perform a variety of functions - until exposure to light, heat or liquid triggers their destruction.

Reza Montazami, an Iowa State University assistant professor of mechanical engineering and an associate of the U.S. Department of Energy's Ames Laboratory, has been working on transient technology for years. The latest development from his lab is a self-destructing, lithium-ion battery capable of delivering 2.5 volts and dissolving or dissipating in 30 minutes when dropped in water. The battery can power a desktop calculator for about 15 minutes.

Montazami said it's the first transient battery to demonstrate the power, stability and shelf life for practical use.

Montazami and his team recently published their discovery in the Journal of Polymer Science, Part B: Polymer Physics.

Study co-authors are Nastaran Hashemi, an assistant professor of mechanical engineering; Simge Çinar, a postdoctoral research associate; Yuanfen Chen and Reihaneh Jamshidi, graduate students; Kathryn White, a Department of Energy-Ames Laboratory intern; and Emma Gallegos, an undergraduate student.

Development of the transient battery was supported by funding from Iowa State's Presidential Initiative for Interdisciplinary Research and the department of mechanical engineering.

"Unlike conventional electronics that are designed to last for extensive periods of time, a key and unique attribute of transient electronics is to operate over a typically short and well-defined period, and undergo fast and, ideally, complete self-deconstruction and vanish when transiency is triggered," the scientists wrote in their paper.

And what about a transient device that depends on a standard battery?

"Any device without a transient power source isn't really transient," Montazami said. "This is a battery with all the working components. It's much more complex than our previous work with transient electronics."

Montazami's previous, proof-of-concept project involved electronics printed on a single layer of a degradable polymer composite. The transient battery is made up of eight layers, including an anode, a cathode and the electrolyte separator, all wrapped up in two layers of a polyvinyl alcohol-based polymer.

The battery itself is tiny - about 1 millimeter thick, 5 millimeters long and 6 millimeters wide. Montazami said the battery components, structure and electrochemical reactions are all very close to commercially developed battery technology.

But, when you drop it in water, the polymer casing swells, breaks apart the electrodes and dissolves away. Montazami is quick to say the battery doesn't completely disappear. The battery contains nanoparticles that don't degrade, but they do disperse as the battery's casing breaks the electrodes apart.

He calls that "physical-chemical hybrid transiency."

And what about applications that require a longer-lasting charge? Larger batteries with higher capacities could provide more power, but they also take longer to self-destruct, according to the scientists' paper. The paper suggests applications requiring higher power levels could be connected to several smaller batteries.

Even though batteries are tried-and-tested technology, Montazami said the transient battery project presented three major challenges for his research group.

First, he said the battery had to produce voltage similar to commercial batteries because many devices won't operate if voltage is low or unsteady. Second, the batteries require multiple layers and a complex structure. And third, fabricating the batteries was difficult and took repeated attempts.

And what kept the group working through all that?

"The materials science part of this," Montazami said. "This is a challenging materials problem, and there are not many groups working on similar projects."

####

For more information, please click here

Contacts:
Reza Montazami

515-294-8733

Copyright © Iowa State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project