Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Tiny works of art with great potential: New materials for the construction of metal-organic 2-dimensional quasicrystals

This is a scanning tunneling microscopic image of the quasicrystalline network built up with europium atoms linked with para-quaterphenyl-dicarbonitrile.
CREDIT: J. I. Urgel / TUM
This is a scanning tunneling microscopic image of the quasicrystalline network built up with europium atoms linked with para-quaterphenyl-dicarbonitrile.

CREDIT: J. I. Urgel / TUM

Abstract:
Unlike classical crystals, quasicrystals do not comprise periodic units, even though they do have a superordinate structure. The formation of the fascinating mosaics that they produce is barely understood. In the context of an international collaborative effort, researchers at the Technical University of Munich (TUM) have now presented a methodology that allows the production of two-dimensional quasicrystals from metal-organic networks, opening the door to the development of promising new materials.

Tiny works of art with great potential: New materials for the construction of metal-organic 2-dimensional quasicrystals

Munich, Germany | Posted on July 15th, 2016

Physicist Daniel Shechtman merely put down three question marks in his laboratory journal, when he saw the results of his latest experiment one day in 1982. He was looking at a crystalline pattern that was considered impossible at the time. According to the canonical tenet of the day, crystals always had so-called translational symmetry. They comprise a single basic unit, the so-called elemental cell, that is repeated in the exact same form in all spatial directions.

Although Shechtman's pattern did contain global symmetry, the individual building blocks could not be mapped onto each other merely by translation. The first quasicrystal had been discovered. In spite of partially stark criticism by reputable colleagues, Shechtman stood fast by his new concept and thus revolutionized the scientific understanding of crystals and solid bodies. In 2011 he ultimately received the Nobel Prize in Chemistry. To this day, both the basic conditions and mechanisms by which these fascinating structures are formed remain largely shrouded in mystery.

A toolbox for quasicrystals

Now a group of scientists led by Wilhelm Auwärter and Johannes Barth, both professors in the Department of Surface Physics at TU Munich, in collaboration with Hong Kong University of Science and Technology (HKUST, Prof. Nian Lin, et al) and the Spanish research institute IMDEA Nanoscience (Dr. David Écija), have developed a new basis for producing two-dimensional quasicrystals, which might bring them a good deal closer to understanding these peculiar patterns.

The TUM doctoral candidate José Ignacio Urgel made the pioneering measurements in the course of a research fellowship at HKUST. "We now have a new set of building blocks that we can use to assemble many different new quasicrystalline structures. This diversity allows us to investigate on how quasicrystals are formed," explain the TUM physicists.

The researchers were successful in linking europium - a metal atom in the lanthanide series - with organic compounds, thereby constructing a two-dimensional quasicrystal that even has the potential to be extended into a three-dimensional quasicrystal. To date, scientists have managed to produce many periodic and in part highly complex structures from metal-organic networks, but never a quasicrystal.

The researchers were also able to thoroughly elucidate the new network geometry in unparalleled resolution using a scanning tunnelling microscope. They found a mosaic of four different basic elements comprising triangles and rectangles distributed irregularly on a substrate. Some of these basic elements assembled themselves to regular dodecagons that, however, cannot be mapped onto each other through parallel translation. The result is a complex pattern, a small work of art at the atomic level with dodecagonal symmetry.

Interesting optical and magnetic properties

In their future work, the researchers are planning to vary the interactions between the metal centers and the attached compounds using computer simulation and experiments in order to understand the conditions under which two-dimensional quasicrystals form. This insight could facilitate the future development of new tailored quasicrystalline layers.

These kinds of materials hold great promise. After all, the new metal-organic quasicrystalline networks may have properties that make them interesting in a wide variety of application. "We have discovered a new playing field on which we can not only investigate quasicrystallinity, but also create new functionalities, especially in the fields of optics and magnetism," says Dr. David Écija of IMDEA Nanoscience.

For one, scientists could one day use the new methodology to create quasicrystalline coatings that influence photons in such a manner that they are transmitted better or that only certain wavelengths can pass through the material.

In addition, the interactions of the lanthanide building blocks in the new quasicrystals could facilitate the development of magnetic systems with very special properties, so-called "frustrated systems". Here, the individual atoms in a crystalline grid interfere with each other in a manner that prevents grid points from achieving a minimal energy state. The result: exotic magnetic ground states that can be investigated as information stores for future quantum computers.

###

The research was funded by the European Research Council (Advanced Grant MolArt), the Spanish Ramón and Cajal Program, the Comunidad de Madrid, the Hong Kong Research Grants Council, and the TUM-HKUST Sponsorship Scheme for Targeted Strategic Partnerships.

####

For more information, please click here

Contacts:
Dr. Andreas Battenberg

49-892-891-0510

Copyright © Technical University of Munich (TUM)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication:

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

2 Dimensional Materials

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Quantum Computing

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Nanoelectronics

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project