Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers harness DNA as the engine of super-efficient nanomachine: New platform detects traces of everything from bacteria to viruses, cocaine and metals

Abstract:
Researchers at McMaster University have established a way to harness DNA as the engine of a microscopic "machine" they can turn on to detect trace amounts of substances that range from viruses and bacteria to cocaine and metals.

Researchers harness DNA as the engine of super-efficient nanomachine: New platform detects traces of everything from bacteria to viruses, cocaine and metals

Hamilton, Canada | Posted on July 10th, 2016

"It's a completely new platform that can be adapted to many kinds of uses," says John Brennan, director of McMaster's Biointerfaces Insitute and co-author of a paper in the journal Nature Communications that describes the technology. "These DNA nano-architectures are adaptable, so that any target should be detectable."

DNA is best known as a genetic material, but is also a very programmable molecule that lends itself to engineering for synthetic applications.

The new method shapes separately programmed pieces of DNA material into pairs of interlocking circles.

The first remains inactive until it is released by the second, like a bicycle wheel in a lock. When the second circle, acting as the lock, is exposed to even a trace of the target substance, it opens, freeing the first circle of DNA, which replicates quickly and creates a signal, such as a colour change.

"The key is that it's selectively triggered by whatever we want to detect," says Brennan, who holds the Canada Research Chair in Bioanalytical Chemistry and Biointerfaces. "We have essentially taken a piece of DNA and forced it to do something it was never designed to do. We can design the lock to be specific to a certain key. All the parts are made of DNA, and ultimately that key is defined by how we build it."

The idea for the "DNA nanomachine" comes from nature itself, explains co-author Yingfu Li, who holds the Canada Research Chair in Nucleic Acids Research.

"Biology uses all kinds of nanoscale molecular machines to achieve important functions in cells," Li says. "For the first time, we have designed a DNA-based nano-machine that is capable of achieving ultra-sensitive detection of a bacterial pathogen."

The DNA-based nanomachine is being further developed into a user-friendly detection kit that will enable rapid testing of a variety of substances, and could move to clinical testing within a year.

####

For more information, please click here

Contacts:
John Brennan

905-525-9140 x20706

Yingfu Li

905-525-9140, ext. 22462.

Wade Hemsworth
Media Relations Manager
905-525-9140 ext. 27988
C: 289-925-8382


Michelle Donovan
Media Relations Manager
905-525-9140 ext. 22869
C: 905-512-8548

Copyright © McMaster University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Synthetic Biology

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Forensics

NIST simulates fast, accurate DNA sequencing through graphene nanopore January 19th, 2016

Nanoparticles give up forensic secrets October 2nd, 2014

"Sifting" Liquid at the Cellular Level July 17th, 2012

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Molecular Machines

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020

Molecular Nanotechnology

Quantum pumping in molecular junctions August 16th, 2024

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Homeland Security

The picture of health: Virginia Tech researchers enhance bioimaging and sensing with quantum photonics June 30th, 2023

Sensors developed at URI can identify threats at the molecular level: More sensitive than a dog's nose and the sensors don't get tired May 21st, 2021

UCF researchers generate attosecond light from industrial laser: The ultrafast measurement of the motion of electrons inside atoms, molecules and solids at their natural time scale is known as attosecond science and could have important implications in power generation, chemical- August 25th, 2020

Highly sensitive dopamine detector uses 2D materials August 7th, 2020

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project