Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light

University of Houston researchers report that for the first time, surface-enhanced near-infrared absorption (SENIRA) spectroscopy has been demonstrated for high sensitivity chemical detection.
CREDIT: University of Houston
University of Houston researchers report that for the first time, surface-enhanced near-infrared absorption (SENIRA) spectroscopy has been demonstrated for high sensitivity chemical detection.

CREDIT: University of Houston

Abstract:
Researchers from the University of Houston have reported a new technique to determine the chemical composition of materials using near-infrared light.

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light

Houston, TX | Posted on June 24th, 2016

The work could have a number of potential applications, including improving downhole drilling analysis in the oil and gas industry and broadening the spectrum of solar light that can be harvested and converted to electricity, said Wei-Chuan Shih, associate professor of electrical and computer engineering at UH and lead author of a paper describing the discovery published June 22 in Nano Letters.

"From a scientific point of view, it's quite a novel discovery to excite plasmonic resonance at near-infrared and make it work for us," he said.

That means substances which can't be accurately measured by sensors operating on the infrared spectrum can now be studied in far more detail than that provided by current techniques using the near-infrared spectrum.

In addition to Shih, the other authors include post-doctoral researchers Greggy M. Santos and Oussama Zenasni and graduate students Fusheng Zhao and Md Masud Parvez Arnob.

Spectroscopy using the infrared spectrum - an analytical technique using infrared light to scan and identify the chemical composition of organic, polymeric and some inorganic materials - is an important tool, but it has limitations. Infrared light is absorbed by water, so the technique doesn't work with water-based samples.

Near-infrared light scanning is compatible with water, but current techniques are less sensitive than those using other wavelengths.

"To overcome these barriers, we have developed a novel technique to simultaneously obtain chemical and refractive index sensing in 1-2.5 μm NIR (near infrared) wavelength range on nanoporous gold (NPG) disks, which feature high-density plasmonic hot-spots of localized electric field enhancement," the researchers wrote. "For the first time, surface-enhanced near-infrared absorption (SENIRA) spectroscopy has been demonstrated for high sensitivity chemical detection."

Shih said working with near infrared light is usually "a double-edged sword," as it can be used with water-based samples but doesn't provide the needed detail. "We showed water is not an issue, but we can also increase the sensitivity of what we want to measure by 10,000 times," he said.

He and members of his lab have worked with nanoporous gold disks since discovering the structure in 2013. For this project, he said they "tuned," or designed, the nanodisks to react when exposed to specific wavelengths, making it possible to develop a sensing technique with the advantages of both infrared and near infrared scanning.

The technique was tested with various crude oil and other hydrocarbon samples, and Shih said it could be helpful in downhole fluid analysis, which uses near infrared spectroscopy to analyze material found deep in a well. The technique allows drillers to know quickly what's below the ground or seabed, but he said the new technique could simplify the process because it requires a smaller sample for analysis, an obvious advantage in laboratory characterization.

Oliver C. Mullins, a scientific advisor at Schlumberger and the primary originator of downhole fluid analysis, said the discovery holds potential for both the lab and the field.

"Optical spectroscopy has made significant contributions in the oil and gas industry beyond laboratory characterization," he said. "In particular, in situ fluid analysis in oil wells based on vibrational overtones and electronic absorption in the visible and near-infrared wavelengths has become an industry standard in wireline well logging. SENIRA brings in an exciting prospect for potential better sensor technology in both field and laboratory settings."

Shih said researchers are thinking about new ways to do things using the technique. "We can do a lot of oil typing with tiny amounts of oil."

Although the paper uses hydrocarbon composition analysis as an example of how the technique could be deployed, Shih said it can be applied to any molecular species. That broad potential use, in addition to the novelty of the technique, is why Nano Letters published the paper, he said.

####

For more information, please click here

Contacts:
Jeannie Kever

713-743-0778

Copyright © University of Houston

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Mining/Extraction/Drilling

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Imaging

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Tools

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Energy

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project